Tribological Behavior of TiO2 PEEK Composite and Stainless Steel for Pediatric Crowns
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Colour Measurement
2.4. Wear Testing
3. Results and Discussion
4. Conclusions
- The PEEK composite as a thin layer over a zirconia structure had lower COF and wear volume, and, consequently, better wear resistance when compared to stainless steel.
- The dominant wear mechanisms that occurred during the tribological test were abrasion in the case of PEEK and adhesion with the formation of oxide and tribo-layers in the stainless steel.
- According to EDS analysis, the presence of adherent tribo-layers resulted from a combination of saliva components and wear debris from the plate, with their formation being tribologically aided.
- In the specific case of stainless steel, the oxide and tribo-layers formed did not provide a protective layer against wear. This is in line with previous studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monse, B.; Heinrich-Weltzien, R.; Benzian, H.; Holmgren, C.; Van Palenstein Helderman, W. PUFA—An index of clinical consequences of untreated dental caries. Commun. Dent. Oral Epidemiol. 2010, 38, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Oral health. World Heal Organ 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 2 January 2023).
- Oral Health Survey of 5-Year-Old Children 2019. GOVUK 2020. Available online: https://www.gov.uk/government/statistics/oral-health-survey-of-5-year-old-children-2019 (accessed on 2 January 2023).
- Çolak, H.; Dülgergil, Ç.; Dalli, M.; Hamidi, M. Early childhood caries update: A review of causes, diagnoses, and treatments. J. Nat. Sci. Biol. Med. 2013, 4, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Grund, K.; Goddon, I.; Schüler, I.M.; Lehmann, T.; Heinrich-Weltzien, R. Clinical consequences of untreated dental caries in German 5- and 8-year-olds. BMC Oral Health 2015, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Sztyler, K.; Wiglusz, R.J.; Dobrzynski, M. Review on Preformed Crowns in Pediatric Dentistry—The. Materials (Basel) 2022, 15, 2081. [Google Scholar] [CrossRef]
- Zafar, S.; Siddiqi, A. Biological responses to pediatric stainless steel crowns. J. Oral Sci. 2020, 62, 245–249. [Google Scholar] [CrossRef]
- Garg, V.; Panda, A.; Shah, J.; Panchal, P. Crowns in Pediatric Dentistry. J. Adv. Med. Dent. Sci. Res. 2016, 4, 41–46. [Google Scholar]
- Shelton, A.; Yepes, J.; Vinson, L.; Jones, J.E.; Tang, Q.; Eckert, G.J.; Downey, T.; Maupome, G. Utilization of Stainless Steel Crowns by Pediatric Dentists and General Dentists. Pediatr. Dent. 2019, 41, 127–131. [Google Scholar]
- Morán-Martínez, J.; Monreal-de Luna, K.D.; Betancourt-Martínez, N.D.; Carranza-Rosales, P.; Contreras-Martínez, J.G.; López-Meza, M.C.; Rodríguez-Villarreal, O. Genotoxicity in oral epithelial cells in children caused by nickel in metal crowns. Genet. Mol. Res. 2013, 12, 3178–3185. [Google Scholar] [CrossRef]
- Keinan, D.; Mass, E.; Zilberman, U. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns. Int. J. Dent. 2010, 2010, 326124. [Google Scholar] [CrossRef]
- Bishara, S.E.; Barrett, R.D.; Selim, M.I. Biodegradation of orthodontic appliances. Part II. Changes in the blood level of nickel. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 115–119. [Google Scholar] [CrossRef]
- Alzanbaqi, S.D.; Alogaiel, R.M.; Alasmari, M.A.; Al Essa, A.M.; Khogeer, L.N.; Alanazi, B.S.; Hawsah, E.S.; Shaikh, A.M.; Ibrahim, M.S. Zirconia Crowns for Primary Teeth: A Systematic Review and Meta-Analyses. Int. J. Environ. Res. Public Health 2022, 19, 2838. [Google Scholar] [CrossRef] [PubMed]
- Malekzadeh Shafaroudi, A.; Nasiri, P.; Nahvi, A. Nickel Sensitivity in Children Due to Using Stainless Steel Crowns: A Narrative Review. J. Pediatr. Rev. 2021, 9, 145–152. [Google Scholar] [CrossRef]
- Siewert, B.; Plaza-Castro, M.; Sereno, N.; Jarman-Smith, M. Applications of PEEK in the Dental Field, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128125243. [Google Scholar]
- Paglia, M.; Beretta, M.; Quinzi, V.; Colombo, S. PEEK polymer in orthodontics: A scoping review. Eur. J. Paediatr. Dent. 2022, 23, 137–139. [Google Scholar] [CrossRef]
- Damanaki, M.; Zoidis, P.; Bakiri, E.; Kourtis, S. PEEK High Performance Polymers: A Review of Properties and Clinical Applications in Prosthodontics and Restorative Dentistry. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 113–121. [Google Scholar] [CrossRef]
- Ana, M.D.; Angel, L.D. Nano-TiO2 Reinforced PEEK/PEI Blends as Biomaterials for Load-Bearing Implant Applications. ACS Appl. Mater. Interfaces 2015, 7, 5561–5573. [Google Scholar] [CrossRef]
- Kurdi, A.; Wang, H.; Chang, L. Tribology International Effect of nano-sized TiO 2 addition on tribological behaviour of poly ether ether ketone composite. Tribol. Int. 2018, 117, 225–235. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, P.; Madeira, S.; Silva, F.S.; Carvalho, O.; Gomes, J.R. Tribological Characterization of Dental Restorative Materials. Biotribology 2020, 23, 100140. [Google Scholar] [CrossRef]
- Sampaio, M.; Buciumeanu, M.; Askari, E.; Flores, P.; Souza, J.C.M.; Gomes, J.R.; Silva, F.S.; Henriques, B. Effects of poly-ether-ether ketone (PEEK) veneer thickness on the reciprocating friction and wear behavior of PEEK/Ti6Al4V structures in artificial saliva. Wear 2016, 368–369, 84–91. [Google Scholar] [CrossRef]
- Ghazal, M.; Albashaireh, Z.S.; Kern, M. Wear resistance of nanofilled composite resin and feldspathic ceramic artificial teeth. J. Prosthet. Dent. 2008, 100, 441–448. [Google Scholar] [CrossRef]
- Pougoum, F.; Qian, J.; Laberge, M.; Martinu, L.; Klemberg-Sapieha, J.; Zhou, Z.; Li, K.Y.; Savoie, S.; Schulz, R. Investigation of Fe3Al-based PVD/HVOF duplex coatings to protect stainless steel from sliding wear against alumina. Surf. Coat. Technol. 2018, 350, 699–711. [Google Scholar] [CrossRef]
- Dogan, H.; Findik, F.; Oztarhan, A. Comparative study of wear mechanism of surface treated AISI 316L stainless steel. Ind. Lubr. Tribol. 2003, 55, 76–83. [Google Scholar] [CrossRef]
- Moore, R.J.; Watts, J.T.F.; Hood, J.A.A.; Burritt, D.J. Intra-oral temperature variation over 24 hours. Eur. J. Orthod. 1999, 21, 249–261. [Google Scholar] [CrossRef]
- Chaturvedi, G.; Pawar, R. An effect of two commercially availabledentrifices on nickel-titanium and stainless steel orthodontic archwires: An In-Vitro Study. J. Crit. Rev. 2020, 7, 781–785. [Google Scholar] [CrossRef]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A diagnostic biomarker. J. Indian Soc. Periodontol. 2013, 17, 461. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Z.R. Friction and wear behavior of human teeth under various wear conditions. Tribol. Int. 2007, 40, 278–284. [Google Scholar] [CrossRef]
- Sampaio, M.; Buciumeanu, M.; Henriques, B.; Silva, F.S. Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures. J. Mech. Behav. Biomed. Mater. 2016, 54, 123–130. [Google Scholar] [CrossRef]
- Doni, Z.; Alves, A.C.; Toptan, F.; Gomes, J.R.; Ramalho, A.; Buciumeanu, M.; Palaghian, L.; Silva, F.S. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Mater. Des. 2013, 52, 47–57. [Google Scholar] [CrossRef]
- Jacobs, O.; Jaskulka, R.; Yan, C.; Wu, W. On the effect of counterface material and aqueous environment on the sliding wear of various PEEK compounds. Tribol. Lett. 2005, 18, 359–372. [Google Scholar] [CrossRef]
- Gao, J.; Cao, Y.; Ma, Y.; Zheng, K.; Zhang, M.; Hei, H.; Gong, H.; Yu, S.; Kuai, P.; Liu, K. Wear, Corrosion, and Biocompatibility of 316L Stainless Steel Modified by Well-Adhered Ta Coatings. J. Mater. Eng. Perform. 2022, 31, 8784–8798. [Google Scholar] [CrossRef]
- Fróis, A.; Evaristo, M.; Santos, A.C.; Louro, C.S. Salivary ph effect on orthodontic appliances: In vitro study of the SS/DLC system. Coatings 2021, 11, 1302. [Google Scholar] [CrossRef]
- Cui, S.; Liu, Y.; Wang, T.; Tieu, K.; Wang, L.; Zeng, D.; Li, Z.; Li, W. Tribological behavior comparisons of high chromium stainless and mild steels against high-speed steel and ceramics at high temperatures. Friction 2022, 10, 436–453. [Google Scholar] [CrossRef]
- VOCO. Voco Bifix Hybrid Abutment—Instructions for Use n.d. Available online: https://www.voco.dental/pt/portaldata/1/resources/products/instructions-for-use/e1/bifix-hybrid-abutment_ifu_e1.pdf (accessed on 6 January 2023).
- Bathala, L.; Majeti, V.; Rachuri, N.; Singh, N.; Gedela, S. The Role of Polyether Ether Ketone (Peek) in Dentistry—A Review. J. Med. Life 2019, 12, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Huang, H.; Shi, M.Y.; Zheng, L.; Qian, L.M.; Zhou, Z.R. In vitro study on the wear behaviour of human tooth enamel in citric acid solution. Wear 2011, 271, 2313–2321. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Silva, C.S.; Caramês, J.; Henriques, B.; Novaes de Oliveira, A.P.; Silva, F.S.; Gomes, J.R. Wear behavior of dental glass-ceramics: A scoping review on the damage of opposing tooth enamel surfaces. Biotribology 2020, 21, 100116. [Google Scholar] [CrossRef]
Material | Mean Surface Roughness (µm) |
---|---|
316 L Stainless Steel | 0.677 ± 0.077 |
PEEK composite | 0.229 ± 0.097 |
NaCl (g) | KCl (g) | CaCl2·2H2O (g) | NaH2PO4 (g) | Na2S·9H2O (g) | Urea (g) | Distilled Water (mL) |
---|---|---|---|---|---|---|
0.4 | 0.4 | 0.906 | 0.69 | 0.005 | 1 | 1000 |
Material | ||
---|---|---|
20 wt%—TiO2 PEEK Composite | Conventional PEEK | |
Vita Classical shade guide | A1 | C4 |
Vita Bleached guide | 4 | 20 |
Material | Mean Hardness (GPa) |
---|---|
316 L Stainless steel | 2.56 ± 0.26 |
PEEK composite | 1.26 ± 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arieira, A.; Madeira, S.; Rodrigues, F.; Silva, F. Tribological Behavior of TiO2 PEEK Composite and Stainless Steel for Pediatric Crowns. Materials 2023, 16, 2420. https://doi.org/10.3390/ma16062420
Arieira A, Madeira S, Rodrigues F, Silva F. Tribological Behavior of TiO2 PEEK Composite and Stainless Steel for Pediatric Crowns. Materials. 2023; 16(6):2420. https://doi.org/10.3390/ma16062420
Chicago/Turabian StyleArieira, Ana, Sara Madeira, Flávio Rodrigues, and Filipe Silva. 2023. "Tribological Behavior of TiO2 PEEK Composite and Stainless Steel for Pediatric Crowns" Materials 16, no. 6: 2420. https://doi.org/10.3390/ma16062420
APA StyleArieira, A., Madeira, S., Rodrigues, F., & Silva, F. (2023). Tribological Behavior of TiO2 PEEK Composite and Stainless Steel for Pediatric Crowns. Materials, 16(6), 2420. https://doi.org/10.3390/ma16062420