Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molas, G.; Nowak, E. Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Appl. Sci. 2021, 11, 11254. [Google Scholar] [CrossRef]
- Ishimaru, K. Future of Non-Volatile Memory-From Storage to Computing-. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 1.3.1–1.3.6. [Google Scholar] [CrossRef]
- Yang, J.Q.; Zhou, T.; Han, S.T. Functional Applications of Future Data Storage Devices. Adv. Electron. Mater. 2021, 7, 2001181. [Google Scholar] [CrossRef]
- Wulf, W.A.; Mckee, S.A. Hitting the Memory Wall: Implications of the Obvious. Appear. Comput. Archit. News 1995, 23, 20–24. [Google Scholar] [CrossRef]
- Cristal, A.; Santana, O.J.; Cazorla, F.; Galluzzi, M.; Ramirez, T.; Pericas, M.; Valero, M. Kilo-instruction processors: Overcoming the memory wall. IEEE Micro 2005, 25, 48–57. [Google Scholar] [CrossRef]
- Efnusheva, D.; Cholakoska, A.; Tentov, A. A Survey of Different Approaches for Overcoming the Processor-Memory Bottleneck. Int. J. Comput. Sci. Inf. Technol. 2017, 9, 151–163. [Google Scholar] [CrossRef]
- Endoh, T.; Koike, H.; Ikeda, S.; Hanyu, T.; Ohno, H. An Overview of Nonvolatile Emerging Memories—Spintronics for Working Memories. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 109–119. [Google Scholar] [CrossRef]
- Govoreanu, B.; Kar, G.S.; Chen, Y.Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Radu, I.P.; Goux, L.; Clima, S.; Degraeve, R.; et al. 10 × 10 nm2 Hf/HfOx Crossbar Resistive RAM with Excellent Performance, Reliability and Low-Energy Operation. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 31.6.1–31.6.4. [Google Scholar] [CrossRef]
- Raghavan, N.; Pey, K.L.; Li, X.; Liu, W.H.; Wu, X.; Bosman, M.; Kauerauf, T. Very Low Reset Current for an RRAM Device Achieved in the Oxygen-Vacancy-Controlled Regime. IEEE Electron Device Lett. 2011, 32, 716–718. [Google Scholar] [CrossRef]
- Khan, R.; Ilyas, N.; Shamim, M.Z.M.; Khan, M.I.; Sohail, M.; Rahman, N.; Khan, A.A.; Khang, S.N.; Khangh, A. Oxide-based resistive switching-based devices: Fabrication, influence parameters and applications. J. Mater. Chem. C 2021, 9, 15755–15788. [Google Scholar] [CrossRef]
- Ha, H.; Pyo, J.; Lee, Y.; Kim, S. Non-Volatile Memory and Synaptic Characteristics of TiN/CeOx/Pt RRAM Devices. Materials 2022, 15, 9087. [Google Scholar] [CrossRef]
- Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53. [Google Scholar] [CrossRef]
- Jang, J.; Gi, S.; Yeo, I.; Choi, S.; Jang, S.; Ham, S.; Lee, B.; Wang, G. A Learning-Rate Modulable and Reliable TiOx Memristor Array for Robust, Fast, and Accurate Neuromorphic Computing. Adv. Sci. 2022, 9, 2201117. [Google Scholar] [CrossRef]
- Akbari, M.; Kim, M.K.; Kim, D.; Lee, J.S. Reproducible and reliable resistive switching behaviors of AlOX/HfOX bilayer structures with Al electrode by atomic layer deposition. RSC Adv. 2017, 7, 16704–16708. [Google Scholar] [CrossRef]
- Choi, S.; Lee, J.; Kim, S.; Lu, W.D. Retention failure analysis of metal-oxide based resistive memory. Appl. Phys. Lett. 2014, 105, 113510. [Google Scholar] [CrossRef]
- Kang, J.F.; Huang, P.; Chen, Z.; Zhao, Y.D.; Liu, C.; Han, R.Z.; Liu, L.F.; Liu, X.Y.; Wang, Y.Y.; Gao, B. Physical understanding and optimization of resistive switching characteristics in oxide-RRAM. In Proceedings of the 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, 12–15 September 2016; pp. 154–159. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y.; Gao, B.; Fu, Y.H.; Zhang, F.F.; Huang, P.; Chen, Y.S.; Liu, L.F.; Liu, X.Y.; Kang, J.F.; et al. Physical Mechanisms of Endurance Degradation in TMO-RRAM. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 12.3.1–12.3.4. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, J.W.; Park, J.; Chung, S.W.; Roh, J.S.; Hong, S.J.; Cho, I.W.; Kwon, H.I.; Lee, J.H. Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories. Appl. Phys. Lett. 2011, 98, 143502. [Google Scholar] [CrossRef]
- Lee, J.K.; Jung, S.; Park, J.; Chung, S.W.; Roh, J.S.; Hong, S.J.; Cho, I.H.; Kwon, H.I.; Park, C.H.; Park, B.G.; et al. Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices. Appl. Phys. Lett. 2012, 101, 103506. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Jo, M.; Park, J.; Siddik, M.; Hwang, H. Noise-Analysis-Based Model of Filamentary Switching ReRAM with ZrOx/HfOx Stacks. IEEE Electron. Device Lett. 2011, 32, 964–966. [Google Scholar] [CrossRef]
- Maccaronio, V.; Crupi, F.; Procel, L.M.; Goux, L.; Simoen, E.; Trojman, L.; Miranda, E. DC and low-frequency noise behavior of the conductive filament in bipolar HfO2-based resistive random access memory. Microelectron. Eng. 2013, 107, 1–5. [Google Scholar] [CrossRef]
- Abgall, F. Switching phenomena in titanium oxide thin films. Solid-State Electron. 1986, 11, 535–541. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.Y.; Ryu, M.K.; Choi, S.Y. Bipolar resistive switching in amorphous titanium oxide thin film. Phys. Status Solidi Rapid Res. Lett. 2010, 1, 28–30. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, S.K.; Lee, J.Y.; Choi, S.Y. Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices. J. Electrochem. Soc. 2011, 158, H979–H982. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, S.K.; Lee, J.Y.; Choi, S.Y. Impact of amorphous titanium oxide film on the device stability of Al/TiO2/Al resistive memory. Appl. Phys. A 2011, 102, 967–972. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 2019, 213, 421. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Meng, J.L.; Li, Q.X.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 2021, 60, 21–26. [Google Scholar] [CrossRef]
- Pandey, V.; Adiba, A.; Ahmad, T.; Nehla, P.; Munjal, S. Forming-free bipolar resistive switching characteristics in Al/Mn3O4/FTO RRAM device. J. Phys. Chem. Solids 2022, 165, 110689. [Google Scholar] [CrossRef]
- Adiba, A.; Pandey, V.; Ahmad, T.; Nehla, P.; Munjal, S. Multilevel resistive switching with negative differential resistance in Al/NiO/ZnFe2O4/ITO ReRAM device. Phys. B 2023, 654, 414742. [Google Scholar] [CrossRef]
- Pandey, V.; Adiba, A.; Nehla, P.; Munjal, S.; Ahmad, T. Bipolar resistive switching with multiple intermediate resistance states in Mn3O4 thin film. Mater. Today Commun. 2023, 34, 105484. [Google Scholar] [CrossRef]
- Choi, S.S.; Choi, A.R.; Yang, J.W.; Hwang, Y.W.; Cho, D.H.; Shim, K.H. Comparative study of low frequency noise and hot-carrier reliability in SiGe PD SOI pMOSFETs. Appl. Surf. Sci. 2008, 254, 6190–6193. [Google Scholar] [CrossRef]
- Ciofi, C.; Neri, B. Low-frequency noise measurements as a characterization tool for degradation phenomena in solid-state devices. J. Phys. D Appl. Phys. 2000, 30, R199–R216. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.Y.; Choi, S.Y.; Kim, J.W. Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 2009, 95, 162108. [Google Scholar] [CrossRef]
- Kumar, D.; Aluguri, R.; Chand, U.; Tseng, T.Y. Metal oxide resistive switching memory: Materials, properties and switching mechanisms. Ceram. Int. 2017, 43, S547–S556. [Google Scholar] [CrossRef]
- Bagdzevicius, S.; Maas, K.; Boudard, M.; Burriel, M. Interface-type resistive switching in perovskite materials. J. Electroceram. 2017, 39, 157–184. [Google Scholar] [CrossRef]
- Zhang, P.; Ang, Y.S.; Garner, A.L.; Valfells, A.; Luginsland, J.W.; Ang, L.K. Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects. J. Appl. Phys. 2021, 129, 100902. [Google Scholar] [CrossRef]
- Kwan, C.P.; Street, M.; Mahmood, A.; Echtenkamp, W.; Randle, M.; He, K.; Nathawat, J.; Arabchigavkani, N.; Barut, B.; Yin, S.; et al. Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 2019, 9, 055018. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, C.B.; Lee, D.S.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Jieng, J.H.; Jang, W.Y.; Lin, C.H.; Tseng, T.Y. Improved Resistive Switching Characteristics by Al2O3 Layers Inclusion in HfO2-Based RRAM Devices. ECS Solid State Lett. 2013, 2, P63–P65. [Google Scholar] [CrossRef]
- Jin, S.; Kwon, J.D.; Kim, Y. Statistical Analysis of Uniform Switching Characteristics of Ta2O5-Based Memristors by Embedding In-Situ Grown 2D-MoS2 Buffer Layers. Materials 2021, 14, 6275. [Google Scholar] [CrossRef] [PubMed]
- Loy, D.J.J.; Dananjaya, P.A.; Chakrabarti, S.; Tan, K.H.; Chow, S.C.W.; Toh, E.H.; Lew, W.S. Oxygen Vacancy Density Dependence with a Hopping Conduction Mechanism in Multilevel Switching Behavior of HfO2-Based Resistive Random Access Memory Devices. ACS Appl. Electron. Mater. 2020, 2, 3160–3170. [Google Scholar] [CrossRef]
- Lukichev, A. Physical meaning of the stretched exponential Kohlrausch function. Phys. Lett. A 2019, 383, 2983–2987. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Lee, H.S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.S.; Hersam, M.C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [Google Scholar] [CrossRef]
- Lee, J.K.; Chung, H.J.; Heo, J.; Seo, S.; Cho, I.H.; Kwon, H.I.; Lee, J.H. Reliability of bottom-gate graphene field-effect transistors prepared by using inductively coupled plasma-chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 193504. [Google Scholar] [CrossRef]
- Jeong, K.S.; Yun, H.J.; Kim, Y.M.; Yang, S.D.; Lee, S.Y.; Kim, Y.S.; Lee, H.D.; Lee, G.W. Investigation of the Gate Bias Stress Instability in ZnO Thin Film Transistors by Low-Frequency Noise Analysis. Jpn. J. Appl. Phys. 2013, 52, 04CF04. [Google Scholar] [CrossRef]
- Fung, T.C.; Baek, G.; Kanickib, J. Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors. J. Appl. Phys. 2010, 108, 074518. [Google Scholar] [CrossRef]
- Hooge, F.N. 1/f noise sources. IEEE Trans. Electron Devices 1994, 41, 1926–1935. [Google Scholar] [CrossRef]
- Lordi, V.; Erhart, P.; Aberg, D. Charge carrier scattering by defects in semiconductors. Phys. Rev. B 2010, 81, 235204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-K.; Pyo, J.; Kim, S. Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials 2023, 16, 2317. https://doi.org/10.3390/ma16062317
Lee J-K, Pyo J, Kim S. Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials. 2023; 16(6):2317. https://doi.org/10.3390/ma16062317
Chicago/Turabian StyleLee, Jung-Kyu, Juyeong Pyo, and Sungjun Kim. 2023. "Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices" Materials 16, no. 6: 2317. https://doi.org/10.3390/ma16062317
APA StyleLee, J.-K., Pyo, J., & Kim, S. (2023). Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials, 16(6), 2317. https://doi.org/10.3390/ma16062317