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Abstract: In this work, we analyze a resistive switching random access memory (RRAM) device with
the metal–insulator–metal structure of Al/αTiOx/Al. The transport mechanism of our RRAM device
is trap-controlled space-charge limited conduction, which does not change during the endurance
test. As the number of resistive switching (RS) cycles increases, the current in the low-resistance state
(LRS) does not change significantly. In contrast, degradation in the high-resistance state (HRS) is
noticeably evident. According to the RS cycle, the current shift fits well with the stretched-exponential
equation. The normalized noise power spectral density (Si/I2) measured in the HRS is an order of
magnitude higher than that in the LRS owing to the difference in the degree of trap occupancy, which
is responsible for the transition of resistance states. During the consecutive RS, the Si/I2 in the HRS
rapidly decreases for approximately 100 cycles and then saturates. In contrast, in the LRS, the Si/I2

does not change significantly. Here we propose a model associated with the endurance degradation
of the experimental device, and the model is verified with a 1/ f noise measurement.

Keywords: resistive switching; RRAM; Al/αTiOx/Al; degradation; low-frequency noise; noise
power spectral density; 1/f noise

1. Introduction

To apply information and communication technology such as artificial intelligence,
augmented reality, virtual reality, and self-driving to our daily life, data are expected to be
generated three times more than the current level [1–3]. In addition, as services, including
telecommuting, web conferences, and streaming, have proliferated around the globe due to
COVID-19, data usage will increase further. According to the statistics from international
data corporations, the total amount of global data is expected to reach 175 ZB by 2025 [3].
Hence, if the demand for memory performance and capacity surges due to the explosive
increase in data, the “memory wall” between the NAND flash and dynamic random access
memory (DRAM), which are the current major memory technologies, will also reach an ex-
treme [4–6]. Therefore, to solve the “memory wall” caused by the performance gap between
the DRAM and NAND flash memory, there is an increasing need for universal memory
that can implement the functions of storage memory (high density and non-volatile) and
working memory (high speed) at the same time [1,7]. In recent decades, resistive switching
random access memory (RRAM) has received much attention as an emerging non-volatile
memory (NVM) technology because of CMOS-compatible materials, simple cell structure,
good scalability (<10 nm), low switching current (~nA), and 3D integration [8–10]. In
addition, recently, in advanced computing technologies for neuromorphic systems, RRAM
has also attracted great attention as one of the promising candidates for synaptic electronics
for the hardware implementation of artificial neural networks owing to its non-volatility, re-
peatable analog switching with good precision, and the potential for large-scale integration
with the crossbar array structure [11–13]. Although great progress has been made recently,
research on RRAM still faces some significant challenges, such as the broad distribution
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of the switching parameters (Vforming, Vset, Vreset, RHRS, and RLRS), retention failure, and
endurance degradation [14–16]. These issues with the device reliability stem from intrinsic
variability because the resistive switching (RS) mechanism of RRAM itself is fundamen-
tally stochastic. Consequently, a prerequisite to the successful application of RRAM is
understanding the underlying physical mechanism associated with the reliability issues
in RRAM. Chen et al. reported the physical mechanisms of endurance degradation in
transition metal oxide-RRAM [17]. Three failure modes were experimentally identified:
(1) resistive window (RW) collapse with decreased RHRS (high resistance) and increased
RLRS (low resistance), (2) sudden stochastic RESET failure, and (3) gradual loss of the RW
with a steady decrease in RHRS. Unfortunately, applying the mechanism associated with
endurance failure behaviors is restricted to the filamentary RRAM. Therefore, a systematic
study on the mechanism of endurance degradation in the interfacial RRAM is required, but
little research has been conducted so far. It has already been verified in previous studies
that low-frequency noise (LFN) measurements can be used as a useful tool for analyzing
RRAM, such as the nature and information of the traps, the current transport, and the RS
mechanism [18–21]. In this work, we investigate the physical mechanism of endurance
degradation in an Al/αTiOx/Al interfacial RRAM device by using the LFN measurement.
The RS phenomenon of the αTiOx was reported by Argall in 1986 [22]. Since then, there
have been many studies on the RS mechanism related to the NVM applications [23–25]. Re-
cently, Jang et al. reported a learning-rate modulable and reliable TiOx memristor array for
robust, fast, and accurate neuromorphic computing [13]. In particular, interfacial RRAMs
have the forming-free and gradual set/reset characteristics, which can reduce additional
power consumption and are advantageous for the symmetry/linearity of conductivity
changes, unlike filament RRAMs [26–30]. Therefore, our study on the degradation mecha-
nism analysis for the optimization of Al/αTiOx/Al interfacial RRAM is a very valuable
work. The result of the noise analysis can be direct evidence of the physical origin of the
endurance failure because its characteristic is utilized to analyze the internal physics of
electronics at the defect level [31,32].

2. Materials and Methods

Figure 1a shows the schematic structure of our experimental device. We fabricated
the interfacial RRAM device with the metal–insulator–metal structure of Al/αTiOx/Al to
investigate the physical mechanism of endurance degradation. The fabrication process is
described as follows. A TiOx film with a thickness of ~8 nm was deposited on a 50 nm
thick Al/SiO2/Si substrate by a plasma-enhanced atomic layer deposition at a substrate
temperature of 180 ◦C. Titanium tetra-iso-propoxide (TTIP) and oxygen plasma were used
as the Ti and oxygen precursors, respectively. The 50 nm thick aluminum bottom and
top electrodes were deposited by a thermal evaporation method, forming cross-bar-type
structures using a shadow mask with a line width of 60 µm, as shown in Figure 1a. Figure 1b
shows the cross-sectional transmission electron microscopy (TEM) image of the cell used
in experiments.

A Keysight B1500A semiconductor parameter analyzer was employed to measure the
RS characteristics of the fabricated RRAM devices. The LFN characteristics were analyzed
with a low-noise current amplifier (SR570) and a signal analyzer (35670A). The voltage
applied to the TiN layer was supplied using a B1500A system. The output current of
the RRAM device was connected to the SR570 system, converting the current fluctuation
into a voltage fluctuation. The 35670A system converted the dynamic signal from the
SR570 system to a power spectral density. The noise floor of our measurement system
was measured to be ~10−24 A2/Hz, which was much lower than the device noise. This
guaranteed that the noise power spectral densities measured in this work were not affected
by the noise floor of the measurement system.
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Figure 1. (a) The simple structure and (b) the cross-sectional TEM image of the fabricated Al/
αTiOx/Al RRAM device.

3. Results

Figure 2a shows the I–V characteristics of the fabricated Al/αTiOx/Al RRAM device
for the initial and 30 cycles. The bias sweep sequence is indicated by the arrows. When
the voltage was swept from 0 V to the negative voltage direction, the device transitioned
from a high-resistance state (HRS) to a low-resistance state (LRS) above the set voltage
(SET process). The LRS was held up to about 2 V during the positive voltage sweep and
then switched back to the HRS above the reset voltage (RESET process). As shown in
Figure 2a, the device exhibited gradual set/reset characteristics that did not show abrupt
current changes. A compliance current of 1 mA was applied to protect the device from
dielectric breakdown. In our device, if a positive voltage was applied to the initial cell,
no switching occurred, and the device permanently broke down. That is, it showed SET
operation at negative voltage and RESET operation at positive voltage. These asymmetric
operation characteristics of Al/αTiOx/Al devices can be explained by asymmetric interface
formation [33]. When referring to the classification criteria of RRAM devices, our device
can be classified as an interfacial RRAM device in which no conductive filament or localized
path is formed within the dielectric [34,35]. The inset of Figure 2a shows the retention
characteristics. Our device maintained the HRS and LRS without significant state change
for 104 s, which guaranteed the reliability of the LFN measurements. To clarify the current
transport mechanism in both the HRS and LRS, the I–V curve at the 30th cycle is replotted
on a double-logarithmic scale in Figure 2b. Referring to the linear guidelines in Figure 2b,
the conduction mechanism of the device can be understood by using the space-charge
limited conduction (SCLC) model [36,37]. The trap-controlled SCLC can be divided into
two regions. In the low-field region, the conduction mechanism was dominated by the
thermally generated free electrons in the dielectric film (Ohmic conduction, I ∝ V). If the
applied field intensity exceeded the critical value, the density of free electrons injected
from the electrode gradually exceeded the equilibrium concentration, and excess electrons
accumulated in the space between the two electrodes. Consequently, the space charge
started to limit the total current flow (SCLC, I ∝ Vm, m > 2). Jeong et al. proposed
the RS mechanism of the Al/αTiOx/Al RRAM device [23]. In the HRS, oxygen ions are
accumulated near the top interface due to redox reactions, which increases the barrier at
the interface. Although bulk αTiOx has relatively high conductivity due to internal oxygen
vacancies, the overall current is determined by the interface. In contrast, in the LRS, the
barrier near the top interface decreases due to the drift of oxygen ions caused by the set
process (positive bias). In addition, the concentration of oxygen vacancies in the bulk αTiOx
decreases, which makes the αTiOx layer more insulating.
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Switching endurance, which tells how often a memory device can switch between cell
states without degradation, is one of the most important figures of merit for a memory
device [38]. From this point of view, developing a technique to analyze the degradation
mechanism of RRAM devices is a very good direction for RRAM optimization. Figure 3a
shows the double-logarithmic plot of the I–V characteristics (HRS to LRS) for 500 DC cycles.
While the current variation in the LRS was insignificant, the degradation in the HRS was
noticeably clear. The change in the trend of the I–V curve, which gradually changed in
one direction, was clearly different from the cycle-to-cycle variability due to the stochastic
nature of the RS phenomenon [39–41]. To analyze the progressive RW collapse of the
device, we first verified whether the current transport followed the SCLC mechanism well
along the endurance cycle. Figure 3b shows the slopes of the I–V curves in Ohmic and the
SCLC region according to the RS cycle. According to the RS cycle, the Ohmic region’s slope
was almost constant at 1 in both resistance states. However, the slope of the SCLC region
changed to 2.7, 2.57, and 2.2 at the first, 10th, and 100th periods, respectively, and then
converged to 2 in the HRS. According to the SCLC theory [36,37], the slope of the I–V curve
in the double logarithmic plot is expected to be 2 for a discrete trap distribution (I ∝ V2)
and greater than 2 for an exponential trap distribution (I ∝ Vm+1, m > 1). So, it can be seen
that the conduction mechanism does not change according to the RS cycle. In addition,
the decrease in the slope with consecutive RS cycles suggests electric-field-induced charge
trapping in the oxide. According to the trap-controlled SCLC model [24,25], SCLC arises
if the current through the bulk solid becomes limited by the buildup of charge injected
from the electrode. If the applied voltage is raised to a threshold value, at which point the
number of charge carriers injected at the electrode becomes equivalent to the number of
thermally generated ones in the bulk, the injected carriers are sufficient to fully fill the trap
states, resulting in a rapid increment of the current. The degradation of our experimental
RRAM device is closely related to this SCLC mechanism. Namely, certain traps whose
energy levels are far below the conduction band (deep traps) are likely to fail to release the
trapped charge carriers during the reset process. Consequently, the repetitive RS process
could induce a more effective filling-up of the deep traps and prevent their effective de-
trapping during the subsequent reset process. Figure 3c shows the endurance characteristic
in both resistance states at the read voltage of 0.1 V. At the early stage of the RS cycle, the
current increased exponentially and reached saturation with an almost linear shape. To
describe the relaxation of out-of-equilibrium disordered systems that do not obey a simple
exponential law, a stretched exponential (SE) function is widely used [42–44]. This model
is defined as f (x) = e−xβ

, where x is the independent variable (here x is the cycle number),
and β is the stretched exponent between 0 and 1. Figure 3d shows the results of the simple
exponential (blue line) and the SE models (red line) fitting. The fitted results were more
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consistent with the SE function at the beginning and end of the curves as shown in the
insets of Figure 3d.
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Based on these results, we propose a mechanism for the endurance degradation in
Al/αTiOx/Al interfacial RRAM devices as shown in Figure 4. When assuming a discrete
trap distribution, the process of filling/emptying all traps is repeated during the RS cycle, as
shown in Figure 4a,b, and no RS degradation occurs. However, when assuming exponential
trap distribution, the deep traps filled with electrons during the set process do not release
electrons during the reset process (Figure 4c), consequently reducing the resistance at the
HRS. Our understanding of the RS degradation mechanism can be well supported by
subsequent LFN measurements. This is because the change in the trap density is directly
related to the noise level [45,46].

Figure 5a shows the normalized noise power spectral density (Si/I2) for several
devices measured at 0.1 V in both the HRS and LRS. The Si/I2 was proportional to 1/ f γ,
with γ ∼ 1 for both states in most cells, which means that the LFN characteristic in
Al/αTiOx/Al RRAM devices also obeyed the classical 1/ f noise theory in both states
(see dotted line in the inset of Figure 5a) [47]. The normalized noise power measured in
the HRS was an order of magnitude higher than that in the LRS. The difference in noise
levels in the different resistance states can be analyzed based on our model illustrated in
Figure 4. Considering that the degree of trap occupancy was responsible for the transition
of resistance states, the magnitude of the Si/I2 in the LRS was reduced because all trap sites
were filled by free electrons. In contrast, in the HRS, the electron flow was obstructed by the
noise source, such as Columbic scattering caused by empty trap sites, which consequently
increased the noise level [48]. Figure 5b shows the Si/I2 in both the HRS and LRS according
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to the RS cycle at the same read bias. The Si/I2 in the LRS did not change significantly
with an increase in the number of cycles, while the Si/I2 in the HRS gradually decreased.
Figure 5c shows the value of the Si/I2 with increasing cycle numbers at the frequencies 20,
40, and 100 Hz. In the HRS, because certain traps did not release the electrons during the
reset process and thus induced a decrease in the trap density, the Si/I2 rapidly decreased
for approximately 100 cycles and then saturated. In contrast, in the LRS, the Si/I2 did
not change significantly. Namely, the reduction of the trap, which was the scattering
center of the charge carrier [48], caused a decrease in the Si/I2. This result shows that
the mechanism of the endurance degradation in Al/αTiOx/Al RRAM, proposed from the
measured degradation characteristics and the SCLC theory, was consistent with the LFN
measurement results.
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Figure 5. (a) The Si/I2 for several devices in both the HRS and LRS at 0.1 V. (b) The Si/I2 in both the
HRS and LRS according to the RS cycle at the same read bias. (c) The change in the Si/I2 according to
the RS cycle in both the HRS (left) and LRS (right) at the frequencies 20, 40, and 100 Hz.
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4. Conclusions

In conclusion, we investigated the physical mechanism of the endurance degradation
in Al/αTiOx/Al interfacial RRAM devices using the LFN measurements. The gradual RW
collapse of the device was distinctly different from the abrupt RW failure of the filamentary
RRAM. During the endurance test, the current transport mechanism maintained the SCLC,
but the trap distribution was changed from a discrete distribution to an exponential distri-
bution. In addition, the stretched-exponential equation was efficiently applied in fitting
the current shift according to the RS cycle. The Si/I2 measured in the HRS was an order
of magnitude higher than that in the LRS because of the difference in the degree of trap
occupancy. From the degradation characteristic and LFN measurement, we proposed a
mechanism of endurance degradation related to the electric field-induced charge trapping.
The proposed model was well supported by the 1/f noise measurement according to the RS
cycle, which showed that LFN measurement can be a valuable analytical tool to clarify the
physical mechanism associated with the RS phenomenon of RRAM devices. Overall, this
study demonstrates the usability of LFN measurements in producing direct evidence of the
physical mechanism underlying the RS degradation phenomenon, which can facilitate the
development of RRAM devices.
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