Analysis of TiO2 Nanolubricant Influence in Micro Deep Drawing of Stainless Steel SUS301
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterisation of TiO2 Nanolubricant
3.2. Effect of TiO2 NP Concentration on Deep Drawing Force
3.3. Effect of TiO2 Nanolubricant on the Quality of Cups
3.4. Lubrication Mechanism
4. Conclusions
- The TiO2 NPs were well dispersed in the developed glycerol-based nanolubricants. The viscosity of the nanolubricant increased with the increased TiO2 NPs concentration, from 0.749 Pa∙s at 1 wt% to 0.872 Pa∙s at 4 wt%.
- The greatest peak and last drawing forces were observed under dry conditions, and these forces were reduced by 9.1% and 36.6%, respectively, when 2 wt% TiO2 nanolubricant was applied.
- The surface of the micro cup exhibited the least wrinkling and the smoothest surface when lubricated with 2 wt% TiO2 nanolubricant.
- The OLP and CLP theories were proposed to interpret the lubrication mechanism involved in MDD. The CLP theory suggests that the nanolubricant can move to the newly formed surface and further reduce friction, while the OLP theory suggests that the addition of TiO2 NPs to the nanolubricant can prevent lubricant leakage. However, when the concentration of TiO2 NPs in the nanolubricant is increased to 4 wt%, agglomeration of the NPs can occur, which may impede the continuous supply of fine NPs to the contact surface for lubrication.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Wang, L.; Zheng, K.; He, Z.; Politis, D.J.; Liu, G.; Yuan, S. High-efficiency forming processes for complex thin-walled titanium alloys components: State-of-the-art and Perspectives. Int. J. Extrem. Manuf. 2020, 2, 032001. [Google Scholar] [CrossRef]
- Behrens, G.; Trier, F.; Tetzel, H.; Vollertsen, F. Influence of tool geometry variations on the limiting drawing ratio in micro deep drawing. Int. J. Mater. Form. 2016, 9, 253–258. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Z.; Dobrzański, L.A.; Lee, C.S.; Yu, F. Recent development in micromanufacturing of metallic materials. Materials 2020, 13, 4046. [Google Scholar] [CrossRef]
- Jia, F.; Zhao, J.; Kamali, H.; Li, Z.; Xie, H.; Ma, L.; Zhou, C.; Jiang, Z. Experimental study on drawability of aluminium-copper composite in micro deep drawing. J. Mater. Process. Technol. 2022, 117662. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, J.; Xie, H. Microforming Technology: Theory, Simulation and Practice; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Zhao, J.; Xie, H.; Lu, H.; Jiang, Z. Size effects in micro rolling of metals. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Busan, Republic of Korea, 25–27 August 2017; IOP Publishing: Bristol, UK, 2017; p. 012013. [Google Scholar]
- Lu, H.; Wei, D.; Jiang, Z.; Liu, X.; Manabe, K. Modelling of size effects in microforming process with consideration of grained heterogeneity. Comput. Mater. Sci. 2013, 77, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Zhao, J.; Jiang, Z. Micromanufacturing of composite materials: A review. Int. J. Extrem. Manuf. 2019, 1, 012004. [Google Scholar] [CrossRef]
- Morshed, A.; Wu, H.; Jiang, Z. A comprehensive review of water-based nanolubricants. Lubricants 2021, 9, 89. [Google Scholar] [CrossRef]
- Fang, Z.; Jiang, Z.; Wang, X.; Zhou, C.; Wei, D.; Liu, X. Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. Int. J. Adv. Manuf. Technol. 2015, 79, 1905–1914. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Jiang, Z.; Wei, D.; Manabe, K.-i.; Zhao, X.; Wu, D.; Furushima, T. Effects of surface roughness on micro deep drawing of circular cups with consideration of size effects. Finite Elem. Anal. Des. 2016, 111, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Xiong, S.; Tieu, A.; Wang, Q.J. Modelling of the effect of friction on cold strip rolling. J. Mater. Process. Technol. 2008, 201, 85–90. [Google Scholar] [CrossRef]
- Thampi, A.D.; Prasanth, M.; Anandu, A.; Sneha, E.; Sasidharan, B.; Rani, S. The effect of nanoparticle additives on the tribological properties of various lubricating oils—Review. Mater. Today Proc. 2021, 47, 4919–4924. [Google Scholar] [CrossRef]
- Huo, M.; Zhao, J.; Xie, H.; Li, S.; Zhang, H.; Hu, Z.; Jiang, Z. Microstructure and mechanical properties of thin varying thickness strips with different transition zones produced by micro flexible rolling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.H.; Warneke, H.; Webbert, H.; Rodriguez, J.; Austin, E.; Tokunaga, K.; Rajak, D.K.; Menezes, P.L. Water-based lubricants: Development, properties, and performances. Lubricants 2021, 9, 73. [Google Scholar] [CrossRef]
- He, J.; Sun, J.; Yang, F.; Meng, Y.; Jiang, W. Water-based Cu nanofluid as lubricant for steel hot rolling: Experimental investigation and molecular dynamics simulation. Lubr. Sci. 2022, 34, 30–41. [Google Scholar] [CrossRef]
- Waqas, M.; Zahid, R.; Bhutta, M.U.; Khan, Z.A.; Saeed, A. A Review of Friction Performance of Lubricants with Nano Additives. Materials 2021, 14, 6310. [Google Scholar] [CrossRef] [PubMed]
- Kasar, A.K.; Reeves, C.J.; Menezes, P.L. The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribol. Int. 2022, 165, 107300. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Luo, L.; Huang, S.; Wang, L.; Zhang, S.; Jiao, S.; Huang, H.; Jiang, Z. Performance evaluation and lubrication mechanism of water-based nanolubricants containing nano-TiO2 in hot steel rolling. Lubricants 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Ge, C.; Wang, C.; Li, S. Tribological behavior of graphene oxide-Fe3O4 nanocomposites for additives in water-based lubricants. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 863–872. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; He, J.; Yang, F. Metallographic structure improvement of hot rolled strip induced by high temperature diffusion of MoS2 nano-lubricant. J. Manuf. Process. 2022, 81, 1–13. [Google Scholar] [CrossRef]
- Wang, C.; Sun, J.; Kong, L.; He, J. Tribological Behavior of Reduced Graphene Oxide–Al2O3 Nanofluid: Interaction among Testing Force, Rotational Speed and Nanoparticle Concentration. Materials 2022, 15, 5177. [Google Scholar] [CrossRef]
- Tsebriienko, T.; Popov, A.I. Effect of poly (titanium oxide) on the viscoelastic and thermophysical properties of interpenetrating polymer networks. Crystals 2021, 11, 794. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Song, S.; Yang, G.; Yu, L.; Wu, Z.; Li, X.; Zhang, P. Preparation and tribological properties of surface-capped copper nanoparticle as a water-based lubricant additive. Tribol. Lett. 2014, 54, 25–33. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; Wu, P.; Dong, C.; Yan, X. The role of nano-TiO2 lubricating fluid on the hot rolled surface and metallographic structure of SS41 steel. Nanomaterials 2018, 8, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Sun, J.; Kong, L. Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling. Tribol. Int. 2017, 114, 257–263. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, G.; Zhang, Y.; Zhang, S.; Zhang, P. A simple preparation of HDA-CuS nanoparticles and their tribological properties as a water-based lubrication additive. Tribol. Lett. 2019, 67, 1–11. [Google Scholar] [CrossRef]
- He, J.; Sun, J.; Meng, Y.; Pei, Y. Superior lubrication performance of MoS2-Al2O3 composite nanofluid in strips hot rolling. J. Manuf. Process. 2020, 57, 312–323. [Google Scholar] [CrossRef]
- Sharma, A.K.; Singh, R.K.; Dixit, A.R.; Tiwari, A.K. Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. J. Manuf. Process. 2017, 30, 467–482. [Google Scholar] [CrossRef]
- Huo, M.; Wu, H.; Xie, H.; Zhao, J.; Su, G.; Jia, F.; Li, Z.; Lin, F.; Li, S.; Zhang, H. Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium. Tribol. Int. 2020, 151, 106378. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Tieu, A.; Sun, W.; Wei, D. Experimental study on wear and friction of work roll material with 4% Cr and added Ti in cold rolling. Wear 2011, 271, 2500–2511. [Google Scholar] [CrossRef]
- Wu, H.; Jia, F.; Zhao, J.; Huang, S.; Wang, L.; Jiao, S.; Huang, H.; Jiang, Z. Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear 2019, 426, 792–804. [Google Scholar] [CrossRef]
- Lassaletta, G.; Fernandez, A.; Espinos, J.; Gonzalez-Elipe, A. Spectroscopic characterization of quantum-sized TiO2 supported on silica: Influence of size and TiO2-SiO2 interface composition. J. Phys. Chem. 1995, 99, 1484–1490. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Cheng, X.; Xia, W.; He, A.; Yun, J.-H.; Huang, S.; Wang, L.; Huang, H.; Jiao, S. Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel. Tribol. Int. 2018, 117, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Lassaletta, G.; Jimenez, V.; Justo, A.; González-Elipe, A.; Herrmann, J.-M.; Tahiri, H.; Ait-Ichou, Y. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B Environ. 1995, 7, 49–63. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L. Analysis of TiO2 nano-additive water-based lubricants in hot rolling of microalloyed steel. J. Manuf. Process. 2017, 27, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wei, D.; Hee, A.C.; Huang, S.; Xing, Z.; Jiao, S.; Huang, H.; Jiang, Z. The influence of water-based nanolubrication on mill load and friction during hot rolling of 304 stainless steel. Int. J. Adv. Manuf. Technol. 2022, 121, 7779–7792. [Google Scholar] [CrossRef]
- Wu, H.; Jia, F.; Li, Z.; Lin, F.; Huo, M.; Huang, S.; Sayyar, S.; Jiao, S.; Huang, H.; Jiang, Z. Novel water-based nanolubricant with superior tribological performance in hot steel rolling. Int. J. Extrem. Manuf. 2020, 2, 025002. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, J.; Zhang, M.; Jiang, Z.; Zhou, C.; Ma, X. Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials 2022, 15, 2600. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, A.; Chen, T.; Allen, Y.Y. Additive manufacturing of precision optics at micro and nanoscale. Int. J. Extrem. Manuf. 2019, 1, 012005. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Kuriyagawa, T. Manufacturing technologies toward extreme precision. Int. J. Extrem. Manuf. 2019, 1, 022001. [Google Scholar] [CrossRef] [Green Version]
- Kamali, H.; Xie, H.; Jia, F.; Wu, H.; Zhao, H.; Zhang, H.; Li, N.; Jiang, Z. Effects of nano-particle lubrication on micro deep drawing of Mg-Li alloy. Int. J. Adv. Manuf. Technol. 2019, 104, 4409–4419. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, Z.; Wei, D. Influences of micro-friction on surface finish in micro deep drawing of SUS304 cups. Wear 2017, 374, 36–45. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, J.; Du, W.; Zhang, X.; Jiang, L.; Jiang, Z. An analysis of ridging of ferritic stainless steel 430. Mater. Sci. Eng. A 2017, 685, 358–366. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, Z.; Wei, D.; Jia, F. A study of influence of hydraulic pressure on micro-hydromechanical deep drawing considering size effects and surface roughness. Wear 2021, 477, 203803. [Google Scholar] [CrossRef]
- Wilson, W.; Murch, L. A refined model for the hydrodynamic lubrication of strip rolling. J. Tribol. 1976, 169, 426–431. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L. A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribol. Int. 2017, 109, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Zhao, J.; Wu, H.; Jiao, S.; Zhao, X.; Zhang, X.; Xu, J.; Jiang, Z. Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO2 nanoparticles. Wear 2018, 396, 162–171. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Qin, B.; Xing, D.; Guo, Y.; Fan, R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 2004, 17, 961–966. [Google Scholar] [CrossRef]
C | Si | Cr | Mn | Ni | N | P | S | Fe |
---|---|---|---|---|---|---|---|---|
0.15 | 0.75 | 16.00–18.00 | 2.00 | 6.00–8.00 | 0.10 | 0.045 | 0.030 | Balance |
Punch Diameter (mm) | Die Diameter(mm) | Radius of Punch Fillet (mm) | Radius of Die Fillet (mm) | Initial Blank Diameter (mm) |
---|---|---|---|---|
0.8 | 0.975 | 0.3 | 0.3 | 1.6 |
Lubricant Category | Description |
---|---|
1 wt% TiO2 | 1 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water |
2 wt% TiO2 | 2 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water |
4 wt% TiO2 | 4 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water |
Nanolubricants | Dynamic Viscosity (Pa∙s) |
---|---|
Glycerol solution | 0.723 ± 0.03 |
1 wt% TiO2 | 0.749 ± 0.04 |
2 wt% TiO2 | 0.854 ± 0.03 |
4 wt% TiO2 | 0.872 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; Zhang, G.; Jia, F.; Li, L.; Zhang, T.; Lu, Y.; Wu, H.; Yang, M.; Jiang, Z. Analysis of TiO2 Nanolubricant Influence in Micro Deep Drawing of Stainless Steel SUS301. Materials 2023, 16, 2196. https://doi.org/10.3390/ma16062196
Pan D, Zhang G, Jia F, Li L, Zhang T, Lu Y, Wu H, Yang M, Jiang Z. Analysis of TiO2 Nanolubricant Influence in Micro Deep Drawing of Stainless Steel SUS301. Materials. 2023; 16(6):2196. https://doi.org/10.3390/ma16062196
Chicago/Turabian StylePan, Di, Guangqing Zhang, Fanghui Jia, Lianjie Li, Tao Zhang, Yao Lu, Hui Wu, Ming Yang, and Zhengyi Jiang. 2023. "Analysis of TiO2 Nanolubricant Influence in Micro Deep Drawing of Stainless Steel SUS301" Materials 16, no. 6: 2196. https://doi.org/10.3390/ma16062196
APA StylePan, D., Zhang, G., Jia, F., Li, L., Zhang, T., Lu, Y., Wu, H., Yang, M., & Jiang, Z. (2023). Analysis of TiO2 Nanolubricant Influence in Micro Deep Drawing of Stainless Steel SUS301. Materials, 16(6), 2196. https://doi.org/10.3390/ma16062196