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Abstract: To improve the quality of products produced from microforming, various nanolubricants
have been applied in the field of micromanufacturing in recent years. In this paper, the effects of
glycerol-based lubricant containing TiO2 NPs (NPs) on micro deep drawing (MDD) of austenitic
stainless steel (ASS) SUS301 were studied, and the lubrication mechanism involved was discussed.
The MDD experiments were conducted with the SUS301 foils under dry, 1, 2, and 4 wt% TiO2 NP
lubrication conditions. The results show that the use of the TiO2 nanolubricants can significantly
improve the quality of the drawn cups in terms of decreased wrinkling and surface roughness.
Besides, the concentration of TiO2 NPs influences lubricity by reducing friction during the MDD
process. The peak drawing force is the lowest when 2 wt% nanolubricant is applied, which drops to
72.54 N from 77.38 N under dry conditions. The micro cup drawn under 2 wt% TiO2 nanolubricant
has the best quality among those obtained under all the lubrication conditions. The lubrication
mechanisms are derived from the mending effects of TiO2 NPs and the formation of thin lubricant
films associated with the open lubricant pockets (OLPs) and close lubricant pocket (CLPs) theory
in the MDD. The CLPs function as reservoirs that retain lubricants to counteract the load pressure,
whereas the OLPs lead to lubricant leakage due to the higher flow resistance. It was found that
the lubricant film and NPs are insufficient at a low concentration (1 wt%), while the lubrication
performance can be enhanced with increased NP concentration. However, there exist apparent
agglomerations on the surface of the produced micro cup when using 4 wt% nanolubricant, which
greatly deteriorates the lubricant performance in the MDD process. It is concluded that the lubricant
containing 2 wt% TiO2 NPs demonstrates the best lubrication performance during the MDD of
ASS SUS301.

Keywords: micro deep drawing; austenitic stainless steel SUS301; TiO2 nanolubricant; wrinkling;
lubricant pockets theory

1. Introduction

Micro deep drawing (MDD) is a fundamental forming method used to produce thin-
walled, hollow, box or cup-like metal products at the micro scale [1–3]. Recent years have
witnessed a growing interest in MDD as a promising micro-manufacturing technology due
to its mass production potential, minor operator requirement, and low tool cost [4–7].

Friction in MDD can significantly influence the profile accuracy, height derivation, and
surface roughness of the micro cup [4,8–12]. Therefore, reducing friction is of paramount
importance in MDD. Traditional liquid lubricants can effectively reduce friction in many
macro-scale metal forming processes. However, they cannot be directly applied in the MDD
process because the lubricant film is hard to form and maintain under high contact pressure
at the micro scale [13–16]. To address this problem, adding nanoparticles (NPs) into the
base lubricant has been identified as one of the best solutions [9,16–18]. To further examine

Materials 2023, 16, 2196. https://doi.org/10.3390/ma16062196 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16062196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8645-7690
https://orcid.org/0000-0002-3322-5324
https://orcid.org/0000-0001-8413-5735
https://doi.org/10.3390/ma16062196
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16062196?type=check_update&version=1


Materials 2023, 16, 2196 2 of 15

the potential of utilising NPs for this purpose, Wu et al. [19] investigated the tribological
behaviour of the lubricant with TiO2 NPs and found that using the nanolubricant can
effectively alleviate the overflow and reduce the friction in the steel-to-steel sliding process.
As a result, subsequent research has been dedicated to exploring the correlation between the
performance of the nanolubricant and the specific characteristics of the added NPs [20–23].
Furthermore, other researchers [24–31] have incorporated TiO2, SiO2, CuS, Al2O3, and
MoS2 NPs into liquid lubricants for application in metal rolling. The results showed that
the shape and size of added NPs could significantly influence the dispersion stability and
performance of the nanolubricant. For example, TiO2 NPs with spherical shapes can well
disperse in water and, therefore, effectively reduce the friction between mating surfaces [32],
and smaller particles exhibit a higher surface area-to-volume ratio, leading to reduced
friction and wear [19]. Moreover, the impact of NP size on dispersion stability is crucial
in optimising lubricant performance, as demonstrated by previous research showing that
certain size ranges can result in improved dispersion stability [33,34]. For instance, P25
TiO2 NPs, which consist of both anatase and rutile phases and have an appropriate particle
size, have been found to reduce friction between the tool and the workpiece [35,36].

To optimise the lubrication performance of liquid lubricants with TiO2 NPs, a com-
prehensive understanding of their lubrication mechanism is essential. To this end, Wu
et al. [37,38] conducted the hot rolling tests under pure water and water-based TiO2 nanol-
ubrication conditions, which revealed that the mending and ball-bearing effects of TiO2
NPs are the primary causes of reduced friction in the contact zone. Moreover, Ma et al. [39]
investigated different fractions of TiO2 NPs in the micro rolling and found that a low
fraction of TiO2 NPs could cause insufficient lubrication. Conversely, excessive TiO2 NPs
could lead to apparent agglomeration at the contact regions, ultimately deteriorating the
surface quality [34,40,41]. Hence, it is crucial to maintain an appropriate concentration of
NPs for optimal lubrication performance.

To date, TiO2 nanolubricants have been widely used in many engineering applications,
such as metal machining, the automotive industry, and the aerospace industry. However,
limited research has been conducted on the application of the TiO2 nanolubricants in
the MDD of austenitic stainless steel (ASS) SUS301, let alone the combination with open
lubricant pockets (OLPs) and close lubricant pocket (CLPs) theory. In addition, the impact of
NP concentration on lubrication performance during MDD remains poorly understood [42].
To fill in this research gap, MDD of ASS SUS301 was conducted in this study using dry
condition and glycerol-based TiO2 nanolubricants with varying concentrations of 1, 2, and
4 wt%. The resulting profile and surface quality of the micro cups were then analysed, and
the role of TiO2 NPs in the MDD of SUS301 was examined in consideration of the OLPs
and CLPs theory.

2. Materials and Methods

SUS301 foils with a 5 mm × 5 mm (length × width) and thickness of 40 ± 2 µm were
used in this study. The chemical compositions of the foil are listed in Table 1. In order to
enhance the crystallinity and eliminate the residual stress of the SUS301 foils, they were
subjected to annealing in an argon-filled KTL tube furnace at 980 ◦C for 2 min [43,44]. After
the annealing process, micro tensile tests were conducted on 5 occasions to acquire the
average mechanical properties of the foils. The precision gearbox used in the tensile tests
was the NN60 series from Cuken Company, which featured a deceleration ratio of 100:1.
Micro tensile samples with a thickness of 40 µm, a width of 3 mm, and a length of 15 mm
were prepared in accordance with the ISO 12086-2:1955 standard. The tensile speed was
0.05 mm/s to achieve a quasi-static condition. As shown in Figure 1, the stress-strain curve
obtained from the micro tensile test is presented. The average yield strength of the annealed
foils, as determined from the curve, was found to be 387 ± 10 MPa. This value serves as an
important indicator of the material’s resistance to deformation and plastic flow.
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Table 1. Chemical compositions of SUS301 (wt%).

C Si Cr Mn Ni N P S Fe

0.15 0.75 16.00–18.00 2.00 6.00–8.00 0.10 0.045 0.030 Balance
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Figure 1. Stress-strain curve of annealed SUS301 foils from micro tensile tests.

The MDD experiments were conducted in the press machine DT-3AW, as shown in
Figure 2. There are two crucial parts in the MDD system, including the press machine and
die sets. The MDD tests were performed in the die set containing the upper and the lower
dies, and the drawing speed was set as 0.1 mm/s. The upper die comprises a micro punch,
force sensor, and blank holder; the lower die includes the cavity. Table 2 summarises the
geometrical dimensions of the die set.
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Table 2. Parameters of the die set and blank.

Punch
Diameter (mm)

Die
Diameter(mm)

Radius of Punch
Fillet (mm)

Radius of Die
Fillet (mm)

Initial Blank
Diameter (mm)

0.8 0.975 0.3 0.3 1.6

Different weight concentrations (1, 2, and 4 wt%) of glycerol-based TiO2 NP lubricants
were prepared to be utilised in the MDD. The TiO2 nano-additive glycerol-based lubri-
cants were prepared by the following method: First, a specific amount of pure TiO2 NPs
(P25 sourced from Sigma-Aldrich™ (St. Louis, MO, USA)) with an approximate diameter
of 20 nm) was weighed and added to balanced deionised water. The mixture was then
stirred mechanically. Next, 0.4 wt% of polyethyleneimine (PEI) was gradually added as
a dispersing agent, and the mixture was centrifuged at 2000 rpm for 10 min to prepare a
stable suspension. PEI, a cationic polymer, acts as a surfactant for the TiO2 NPs, thereby
improving the dispersion of the NPs. Subsequently, 80 wt% of glycerol was added drop
by drop to the solution. The suspension underwent mechanical stirring at a speed of
2000 rpm for 10 min, followed by ultrasonication for an additional 10 min to ensure com-
plete disintegration of any remaining clumps. The weight of configuring lubricant is 50 g,
and the specific chemical compositions of the various lubrication conditions can be found
in Table 3. To determine the phase of TiO2 NPs, an X-ray diffraction (XRD) analysis was
performed on a sample that was prepared by mixing TiO2 NPs with ethanol and depositing
them onto a glass substrate. The process involved dipping the mixture onto the substrate
and then allowing the ethanol to evaporate, thereby leaving the NPs deposited on the
glass surface. The XRD analysis was performed using a Philips PW1730 conventional
diffractometer (Royal Philips, Amsterdam, The Netherlands) equipped with Cu-Kα ra-
diation. The measurement parameters were optimised to ensure accurate results, with a
2θ range set between 0–70◦, a step size of 0.02◦, and a scan speed of 1.5◦ per minute. The
entire analysis was performed under controlled room temperature conditions. In addi-
tion, the JEM-ARM200F transmission electron microscope (TEM)from JEOL (Tokyo, Japan)
combined with energy dispersive spectroscopy (EDS) was used to obtain the distribution
and size patterns of the NPs at different concentrations. The stability of glycerol-based
nanolubricants was evaluated using a sedimentation method, which allowed for direct
observation of NP sedimentation. The results of dispersion stability were obtained through
photo capture within a 120-h period. The viscosities of these lubricants were measured by
rheometer MCR 301 (Anton Paar, Sydney, NSW, Australia) at room temperature. To ensure
the homogeneity and dispersion of NPs, the lubricants were placed in an ultrasonic bath
for 20 min before the MDD. As illustrated in Figure 3, approx. 0.1 mL of the nanolubricant
was introduced into the die cavity prior to performing the MDD tests. By doing this, the
lubricant adhered to the die cavity, forming a lubricant film which carried the TiO2 NPs.

Table 3. Various compositions of lubricants.

Lubricant Category Description

1 wt% TiO2 1 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water
2 wt% TiO2 2 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water
4 wt% TiO2 4 wt% TiO2 + 0.4 wt% PEI + 80 wt% glycerol+ balance deionised water

In this study, the force data collected from the KYOWA load cell LMA-A-200 N (Niza,
SP, Japan), which had a capacity of up to 200 N and an accuracy of 0.01 N, were analysed.
After the MDD tests, the profiles, morphologies, and EDS mappings of the micro cups were
observed by a VK-X100 3D laser scanning microscope from Keyence (Kallang, Singapore)
and a JSM-7001F field emission scanning electron microscope (SEM) from JEOL (Tokyo,
Japan). To obtain reliable results, the MDD tests were repeated five times under the
proposed lubrication conditions.
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3. Results and Discussion
3.1. Characterisation of TiO2 Nanolubricant

Figure 4 presents the XRD patterns of the TiO2 NPs being used in this study. The
phases of these NPs can be determined as a typical P25 TiO2, which contains 25 wt%
rutile and 75 wt% anatase, referring to the XRD standard atlas as (JCPDS Nos. 21-1272
for Anatase-type and 21-1276 for Rutile-type). Table 4 lists the viscosity values of the
lubricants at a shear rate of 1000/s, which showed that the inclusion of TiO2 NPs in
glycerol increased viscosity from 0.723 ± 0.03 Pa·s to 0.749 ± 0.04 Pa·s, reflecting a 13%
increase when the NP concentration increased from 1 wt% to 2 wt%. A slight 4% rise in
viscosity was noted when the NP concentration was further increased to 4 wt%. The
2 wt% lubricant had the smallest error bar, indicating its most stable viscosity among
the various lubricants. Figure 5 presents TEM images of TiO2 NPs at concentrations of
1 wt%, 2 wt%, and 4 wt% immediately after preparation. The results indicate that
the NPs maintain their size and dispersion throughout the observation period under
various conditions, demonstrating the long-term stability of the system. It is notewor-
thy that most of the TiO2 NPs were found to be uniformly dispersed with an average
diameter of around 30 nm. However, at a concentration of 4 wt%, a clear tendency
towards agglomeration was observed.
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Table 4. Lubricant viscosity at room temperature.

Nanolubricants Dynamic Viscosity (Pa·s)

Glycerol solution 0.723 ± 0.03
1 wt% TiO2 0.749 ± 0.04
2 wt% TiO2 0.854 ± 0.03
4 wt% TiO2 0.872 ± 0.05
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Figure 6 displays the sedimentation of TiO2 NPs in various concentrations over dif-
ferent periods of time. The results indicate that the as-synthesised suspensions exhibit
exceptional stability, regardless of composition. After a prolonged period of 120 h, the TiO2
NPs remained largely undisturbed, demonstrating the outstanding dispersion stability of
the glycerol-based nanolubricants.
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3.2. Effect of TiO2 NP Concentration on Deep Drawing Force

Figure 7a shows the force versus displacement curves under different lubrication
conditions. As shown in this figure, the variation trend of drawing force is almost the same
under four lubrication conditions. The drawing force rises slightly at the beginning of the
drawing process. With the downward movement of the punch, the drawing force increases
significantly to the peak value, then decreases to the end. The 4 wt% curve in Figure 7a
is distinguished by an earlier peak value compared to the dry, 1, 2, and 4% curves. This
may be due to the increased concentration of TiO2 nanolubricant, which allows for the
blank to slip into the die cavity more quickly. This results in an earlier onset of peak force
during the material deformation process. It is notable that this strain in the initial stage
may have a significant impact on the quality of the micro cup mouth. It is generally agreed
that the contact area between the blank and the cavity keeps increasing during the drawing
process, which enhances the proportion of friction. Alternatively, it could simply mean that
the peak drawing forces could be compared to reflect the performance of the lubricants in
reducing friction. As discussed, the lower peak drawing force indicates more reduction
of friction. It can be seen from Figure 7b that the peak drawing forces obtained under dry,
1, 2, and 4 wt% TiO2 lubrication conditions are 77.38 ± 2.4, 72.54 ± 3.2, 70.32 ± 1.5, and
71.79 ± 1.2 N, respectively. These results are similar to those obtained in the previous
study [42], showing that the peak drawing force is lower under the lubrication case than
that under dry conditions. This means TiO2 nanolubricant is efficient in reducing friction.
It should be noted that the reduction of the peak drawing force is the largest, namely
7.06 N (9.1%), when using the 2 wt% nanolubricant. However, the effect of the nanolubricant
on the last drawing force should also be considered, as depicted in Figure 7b. The last
drawing forces are 17.13 ± 3.1, 11.63 ± 2.2, 10.86 ± 1.5, and 13.91 ± 0.8 N under dry,
1, 2, and 4 wt% TiO2 lubricants, respectively. The last drawing force, which is the force
required to complete the micro deep drawing process and produce the final part, is a
crucial parameter in the micro deep drawing process. It not only impacts the quality and
consistency of the final parts but also the energy consumption and process efficiency. As
the final drawing force increases, the total deformation of the material also increases, along
with a decline in the surface finish and dimensional accuracy of the final parts. In addition,
the final drawing force is also related to energy consumption and process efficiency. A
lower final drawing force leads to less energy consumption, which can contribute to a
sustainable manufacturing process. Our study found that the 2 wt% TiO2 nanolubricant is
the most effective in reducing the largest and final drawing force, making it a potentially
efficient lubricant for use in the micro deep drawing process.
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3.3. Effect of TiO2 Nanolubricant on the Quality of Cups

Figure 8 presents the mouth view of micro cups drawn under different lubrication
conditions. It is notable that the micro cups drawn under the nanolubricants have a
smaller number of wrinkling points than those drawn under dry conditions. Besides,
the micro cup drawn under 2 wt% TiO2 nanolubricant exhibits the least wrinkles. The
wrinkling occurs during the MDD due to the inhomogeneous formation along the rim
of the blank. In addition, the wrinkling might rely on the energy consumption along the
blank rim, where the primary formation is circumferential compression; the secondary
formation contains bending and thickness direction blank holding. A difference between
the wrinkling of the micro cups can be attributed to the performance of the lubricants.
When more energy was consumed in the primary formation than that in the secondary
formation, obvious wrinkling could be formed. The TiO2 lubricants could help reduce
friction, allowing the blank to slide more easily into the die cavity. The energy consumption
of the compression could be minimised with less contact time between the blank and
blank holder, thus reducing the wrinkling. The results demonstrated that the wrinkling
depends on the concentration of the TiO2 nanolubricant. According to Section 3.1, the 2 wt%
TiO2 nanolubricant has the best performance in reducing friction among these lubrication
conditions. Therefore, the cup drawn under 2 wt% TiO2 nanolubricant exhibits the least
wrinkles.

Materials 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 8. Mouth view of drawn cups from different lubrication conditions: (a) dry; (b) 1 wt% TiO2 
lubrication; (c) 2 wt% TiO2 lubrication; and (d) 4 wt% TiO2 lubrication. 

 
Figure 9. (a) The selected area on the cup for surface roughness measurement; and the surface mor-
phology of the cups from (b) dry; (c) 1 wt% TiO2 lubrication; (d) 2 wt% TiO2 lubrication; and (e) 4 
wt% TiO2 lubrication. 

Figure 8. Mouth view of drawn cups from different lubrication conditions: (a) dry; (b) 1 wt% TiO2

lubrication; (c) 2 wt% TiO2 lubrication; and (d) 4 wt% TiO2 lubrication.
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significantly [4]. Therefore, measuring the roughness of this area could explore the effect
of the lubricant on the surface quality. Figure 9b–e display the surface view of the micro
cups drawn under dry, 1, 2, and 4 wt% TiO2 lubrication conditions, respectively. It can
be observed that apparent scratches exist on the surface of the micro cup. To evaluate the
surface quality of the micro cup statically, the surface roughness Ra could be measured.
Prior to the MDD, the surface roughness of the material was 0.34 ± 0.1 µm. Figure 10
shows the average Ra of the micro cup surface under different lubrication conditions. From
this figure, the Ra value is 0.65 ± 0.15 µm under dry conditions, and this value decreases
when using the TiO2 nanolubricants. Besides, the Ra values are 0.42 ± 0.1, 0.35 ± 0.08,
and 0.45 ± 0.12 µm under 1, 2, and 4 wt% TiO2 nanolubricants, respectively. The results
show that the application of nanolubricant could help improve the surface quality of the
drawn micro cup. It is notable that the Ra value is the lowest under 2 wt% nanolubricant
among all the lubricants being used, which indicates that the micro cup drawn under 2 wt%
lubricant has the smoothest surface. During the drawing process, the surface of the micro
cup becomes rough due to the friction [45]. The nanolubricants are efficient in reducing
friction, and 2 wt% TiO2 nanolubricant is the most efficient in reducing the friction. These
findings support the notion that using the 2 wt% TiO2 lubricant is the most efficient in
improving the surface quality of the drawn cup.
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3.4. Lubrication Mechanism

Figure 11a–c shows the SEM images and EDS mappings of the micro cups drawn
under 1, 2, and 4 wt% TiO2 nanolubricant, respectively. The figure demonstrates that the
TiO2 NPs remain on the surface of the micro cup. Besides, the amount of the remaining
TiO2 NPs increases significantly with a higher concentration of TiO2 NPs. When observing
the morphologies of the TiO2 NPs with different concentrations, it is found that TiO2
NPs distribute scattered under 1 wt% TiO2 nanolubricant. Besides, the NPs agglomerate
more obviously under a denser nanolubricant. The amount of TiO2 NPs clusters increases
significantly when increasing the concentration of the TiO2 nanolubricant from 2 wt% to
4 wt%. The lubricant formed the lubricant film carrying the TiO2 NPs on the die cavity
surface. It is notable that the attached lubricating film can avoid direct contact between
the blank and the die cavity, which then decreases the friction. According to Wilson and
Murch [46], the thickness of the lubricating film is related to the dynamic viscosity. The film
could be insufficient to spread on the surface if the viscosity is too low. Therefore, increasing
the concentration of TiO2 NPs could promise a sufficient film. Meanwhile, the TiO2 NPs
in the lubricant film act as ball bearing that can convert the motion between contact pairs
from sliding to rotating, further reducing the friction [47,48]. Additionally, the TiO2 NPs
can be pressed into surface defects, mending the uneven surface and further enhancing
the performance of the lubricants [49]. The result shows that the TiO2 NP clusters exist
obviously under 4 wt% TiO2 nanolubricant. It has been reported that too many NPs existing
in a small space could incorporate carrying fluid on the surface of each NP into an effective
volume of solid, which, in turn, increases the possibility of agglomeration [19].

Figure 12 shows the distribution of TiO2 NPs near the rim of the micro cup drawn
under 1, 2, and 4 wt% TiO2 nanolubricants. The TiO2 clusters occur obviously near the
rim, and the amount of these clusters increases significantly with the higher concentration
of TiO2 NPs. OLPs and CLPs theory could be considered when using the nanolubricant
in microforming [11,42,45]. Figure 13 illustrates the formation of a lubricant film at the
edge of the sample based on the OLPs and CLPs theories. It is notable that the CLPs
area retains the lubricant that could counteract the load pressure. The surface flattens
during the forming process. Thus the actual contact area increases. Therefore, the lubricant
in the original direct-contact surface and CLPs move to the newly added direct-contact
surface and form a lubricating film. The OLPs are in the area adjacent to the surface edge,
resulting in the leakage of the lubricant. The lubricant becomes more dense and viscous
with a higher concentration, thus increasing the flow resistance that can cause more static
behaviour to avoid overflow and drain from the interface. The lubricant trapped within
the surface roughness valleys is able to withstand the contact pressure, while the NPs aid
in the storage of the lubricant. The contact pressure has a significant impact on friction
and, thus, the overall forming load [42,48]. However, at a concentration of 4 wt%, the
nanolubricant was found to clump together easily. The agglomeration of the NPs can
impede the continuous supply of fine NPs to the contact surface for lubrication, thereby
reducing the lubricity. Ultimately, a 2 wt% concentration of TiO2 nanolubricant was found
to provide an adequate lubricant film while minimising clumping, resulting in the best
performance in reducing friction.
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4. Conclusions

This work presents experimental studies on the micro deep drawing (MDD) of
austenitic stainless steel (ASS) SUS301 foils under different lubrication conditions, in-
cluding dry conditions and glycerol-based lubricants with 1, 2, and 4 wt% TiO2 NPs. This
aims to clearly understand the lubrication mechanisms involved in MDD and explore an
optimal lubricant for the MDD of ASS SUS301. The following conclusions were drawn
from this work:

1. The TiO2 NPs were well dispersed in the developed glycerol-based nanolubricants.
The viscosity of the nanolubricant increased with the increased TiO2 NPs concentra-
tion, from 0.749 Pa·s at 1 wt% to 0.872 Pa·s at 4 wt%.

2. The greatest peak and last drawing forces were observed under dry conditions,
and these forces were reduced by 9.1% and 36.6%, respectively, when 2 wt% TiO2
nanolubricant was applied.

3. The surface of the micro cup exhibited the least wrinkling and the smoothest surface
when lubricated with 2 wt% TiO2 nanolubricant.

4. The OLP and CLP theories were proposed to interpret the lubrication mechanism
involved in MDD. The CLP theory suggests that the nanolubricant can move to the
newly formed surface and further reduce friction, while the OLP theory suggests
that the addition of TiO2 NPs to the nanolubricant can prevent lubricant leakage.
However, when the concentration of TiO2 NPs in the nanolubricant is increased to
4 wt%, agglomeration of the NPs can occur, which may impede the continuous supply
of fine NPs to the contact surface for lubrication.
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