The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate and Ultimate Analysis
2.2. Stoichiometric Analysis
2.3. Phytotoxicity Test
2.4. Preparation of the Biochar Extract
2.4.1. Determination of the Total Phenolic Content
2.4.2. Determination of the Total Flavonoid Content
2.4.3. Determination of the Total Antioxidant Activity
2.4.4. Determination of the Tannin Content
2.4.5. Determination of Juglone Content
2.4.6. Chemical Analysis of Materials
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate and Ultimate Analysis
3.1.1. Proximate and Ultimate Analysis of Walnut Shells
3.1.2. Proximate and Ultimate Analysis of Pistachio Shells
3.1.3. Proximate and Ultimate Analysis of Peanut Shells
3.2. Stoichiometric Analysis
3.3. Phytotoxicity Test
3.4. Chemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okedu, K.; AlSenaidi, A.S.; Al Hajri, I.; Al Rashdi, I.; Al Salmani, W. Real Time Dynamic Analysis of Solar PV Integration for Energy Optimization. Int. J. Smart Grid 2020, 4, 68–79. [Google Scholar] [CrossRef]
- Espina, R.U.; Barroca, R.B.; Abundo, M.L.S. Proximate Analysis of the Torrefied Coconut Shells. Int. J. Renew. Energy Res. IJRER 2022, 12, 489–494. [Google Scholar] [CrossRef]
- IEA. IEA Technology Roadmap—Delivering Sustainable Bioenergy—Analysis. Available online: https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy (accessed on 1 September 2022).
- Garrido, M.A.; Conesa, J.A.; Garcia, M.D. Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes. Energies 2017, 10, 850. [Google Scholar] [CrossRef] [Green Version]
- Lubwama, M.; Yiga, V.A. Development of Groundnut Shells and Bagasse Briquettes as Sustainable Fuel Sources for Domestic Cooking Applications in Uganda. Renew. Energy 2017, 111, 532–542. [Google Scholar] [CrossRef]
- Lubwama, M.; Yiga, V.A. Characteristics of Briquettes Developed from Rice and Coffee Husks for Domestic Cooking Applications in Uganda. Renew. Energy 2018, 118, 43–55. [Google Scholar] [CrossRef]
- Brunerová, A.; Roubík, H.; Brožek, M. Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel. Energies 2018, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Purohit, P.; Chaturvedi, V. Biomass Pellets for Power Generation in India: A Techno-Economic Evaluation. Environ. Sci. Pollut. Res. 2018, 25, 29614–29632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCaffrey, Z.; Torres, L.; Chiou, B.S.; Ferreira, S.R.; Silva, L.E.; Wood, D.F.; Orts, W.J. Torrefaction of Almond and Walnut Byproducts. Front. Energy Res. 2021, 9, 91. [Google Scholar] [CrossRef]
- Almond Board of California Crop Reports. Almond Almanac Report. Available online: https://www.almonds.com/tools-and-resources/crop-reports/almond-almanac (accessed on 1 September 2022).
- California Avocado Commission. California Agricultural Statistics Review. 2021. Available online: https://www.californiaavocadogrowers.com/articles/2021-california-agricultural-statistics-review-available-online (accessed on 1 September 2022).
- Ujjinappa, S.; Sreepathi, L.K. Production and Quality Testing of Fuel Briquettes Made from Pongamia and Tamarind Shell. Sadhana Acad. Proc. Eng. Sci. 2018, 43, 58. [Google Scholar] [CrossRef] [Green Version]
- Gürdil, G.A.K.; Selvi, K.C.; Malaták, J.; Pinar, Y. Biomass Utilization for Thermal Energy. AMA Agric. Mech. Asia Afr. Lat. Am. 2009, 20, 80–85. [Google Scholar]
- Wang, Y.; Yin, R.; Liu, R. Characterization of Biochar from Fast Pyrolysis and Its Effect on Chemical Properties of the Tea Garden Soil. J. Anal. Appl. Pyrolysis 2014, 110, 375–381. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Shen, Y.; Wang, J.; Yang, Y.; Zhang, W.; Wang, S. Oxygen Migration Characteristics during Bamboo Torrefaction Process Based on the Properties of Torrefied Solid, Gaseous, and Liquid Products. Biomass Bioenergy 2019, 128, 105300. [Google Scholar] [CrossRef]
- Fang, S.; Yu, Z.; Lin, Y.; Hu, S.; Liao, Y.; Ma, X. Thermogravimetric Analysis of the Co-Pyrolysis of Paper Sludge and Municipal Solid Waste. Energy Convers. Manag. 2015, 101, 626–631. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Carrier, M.; Gorgens, J.F.; Mohee, R. Pyrolysis and Combustion of Municipal Solid Wastes: Evaluation of Synergistic Effects Using TGA-MS. J. Anal. Appl. Pyrolysis 2016, 121, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.; Liu, Z.; Liu, T.; Gai, C. Emissions of Polycyclic Aromatic Hydrocarbons (PAHs) during Hydrothermally Treated Municipal Solid Waste Combustion for Energy Generation. Appl. Energy 2016, 184, 396–403. [Google Scholar] [CrossRef]
- Ding, K.; Zhong, Z.; Wang, J.; Zhang, B.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Zhong, D.; Chen, P.; et al. Improving Hydrocarbon Yield from Catalytic Fast Co-Pyrolysis of Hemicellulose and Plastic in the Dual-Catalyst Bed of CaO and HZSM-5. Bioresour. Technol. 2018, 261, 86–92. [Google Scholar] [CrossRef]
- Fan, Y.; Cai, Y.; Li, X.; Jiao, L.; Xia, J.; Deng, X. Effects of the Cellulose, Xylan and Lignin Constituents on Biomass Pyrolysis Characteristics and Bio-Oil Composition Using the Simplex Lattice Mixture Design Method. Energy Convers. Manag. 2017, 138, 106–118. [Google Scholar] [CrossRef]
- Bożym, M.; Gendek, A.; Siemiątkowski, G.; Aniszewska, M.; Malaťák, J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials 2021, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Malaták, J.; Jevic, P.; Gürdil, G.A.K.; Selvi, K.Ç. Biomass Heat-Emission Characteristics of Energy Plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008, 39, 9–13. [Google Scholar]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, Compost and Biochar-Compost Blend as Options to Recover Nutrients and Sequester Carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Chi-Wei Lan, J.; Chen, W.H.; Chang, J.S. Microalgae from Wastewater Treatment to Biochar—Feedstock Preparation and Conversion Technologies. Energy Convers. Manag. 2017, 150, 1–13. [Google Scholar] [CrossRef]
- Sang, F.; Yin, Z.; Wang, W.; Almatrafi, E.; Wang, Y.; Zhao, B.; Gong, J.; Zhou, C.; Zhang, C.; Zeng, G.; et al. Degradation of Ciprofloxacin Using Heterogeneous Fenton Catalysts Derived from Natural Pyrite and Rice Straw Biochar. J. Clean. Prod. 2022, 378, 134459. [Google Scholar] [CrossRef]
- Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. 1D Porous Tubular G-C3N4 Capture Black Phosphorus Quantum Dots as 1D/0D Metal-Free Photocatalysts for Oxytetracycline Hydrochloride Degradation and Hexavalent Chromium Reduction. Appl. Catal. B 2020, 273, 119051. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, L.; Liu, K.; Wang, J.; Zhu, H.; Song, Q.; Shu, X. Co-Pyrolysis of Sewage Sludge and Cotton Stalks. Waste Manag. 2019, 89, 430–438. [Google Scholar] [CrossRef]
- Tao, M.L.; Guan, H.Y.; Wang, X.H.; Liu, Y.C.; Louh, R.F. Fabrication of Sulfonated Carbon Catalyst from Biomass Waste and Its Use for Glycerol Esterification. Fuel Process. Technol. 2015, 138, 355–360. [Google Scholar] [CrossRef]
- Ellis, N.; Masnadi, M.S.; Roberts, D.G.; Kochanek, M.A.; Ilyushechkin, A.Y. Mineral Matter Interactions during Co-Pyrolysis of Coal and Biomass and Their Impact on Intrinsic Char Co-Gasification Reactivity. Chem. Eng. J. 2015, 279, 402–408. [Google Scholar] [CrossRef]
- Qin, Y.H.; Han, Q.Q.; Zhao, Z.B.; Du, Z.Y.; Feng, J.; Li, W.Y.; Vassilev, S.V.; Vassileva, C.G. Impact of Biomass Addition on Organic Structure and Mineral Matter of Char during Coal-Biomass Co-Gasification under CO2 Atmosphere. Fuel 2017, 202, 556–562. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Y.; Ma, Q.; Zhou, H.; Luo, X.; Liu, X.; Wang, S. Evolution of the Chemical Composition, Functional Group, Pore Structure and Crystallographic Structure of Bio-Char from Palm Kernel Shell Pyrolysis under Different Temperatures. J. Anal. Appl. Pyrolysis 2017, 127, 350–359. [Google Scholar] [CrossRef]
- Malaťák, J.; Vaculík, P. Biomasa pro Výrobu Energie—Google Books. Available online: https://books.google.com.pa/books/about/Biomasa_pro_v%C3%BDrobu_energie.html?id=uJAKYAAACAAJ&redir_esc=y (accessed on 30 September 2022).
- Nhuchhen, D.R.; Afzal, M.T. HHV Predicting Correlations for Torrefied Biomass Using Proximate and Ultimate Analyses. Bioengineering 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of Torrefaction Process Parameters on Biomass Feedstock Upgrading. Fuel 2012, 91, 147–154. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A. Hydrothermal Carbonization, Torrefaction and Slow Pyrolysis of Miscanthus Giganteus. Energy 2017, 140, 1292–1304. [Google Scholar] [CrossRef]
- Wang, G.J.; Luo, Y.H.; Deng, J.; Kuang, J.H.; Zhang, Y.L. Pretreatment of Biomass by Torrefaction. Chin. Sci. Bull. 2011, 56, 1442–1448. [Google Scholar] [CrossRef] [Green Version]
- Prins, M.J.; Ptasinski, K.J.; Janssen, F.J.J.G. More Efficient Biomass Gasification via Torrefaction. Energy 2006, 31, 3458–3470. [Google Scholar] [CrossRef]
- Arnsfeld, S.; Senk, D.; Gudenau, H.W. The Qualification of Torrefied Wooden Biomass and Agricultural Wastes Products for Gasification Processes. J. Anal. Appl. Pyrolysis 2014, 107, 133–141. [Google Scholar] [CrossRef]
- Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of Biomass Torrefaction Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Hakkou, M.; Pétrissans, M.; Gérardin, P.; Zoulalian, A. Investigations of the Reasons for Fungal Durability of Heat-Treated Beech Wood. Polym. Degrad. Stab. 2006, 91, 393–397. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics. Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Mohd Fuad, M.A.H.; Hasan, M.F.; Ani, F.N. Microwave Torrefaction for Viable Fuel Production: A Review on Theory, Affecting Factors, Potential and Challenges. Fuel 2019, 253, 512–526. [Google Scholar] [CrossRef]
- Yan, B.; Jiao, L.; Li, J.; Zhu, X.; Ahmed, S.; Chen, G. Investigation on Microwave Torrefaction: Parametric Influence, TG-MS-FTIR Analysis, and Gasification Performance. Energy 2021, 220, 119794. [Google Scholar] [CrossRef]
- Chiou, B.S.; Valenzuela-Medina, D.; Bilbao-Sainz, C.; Klamczynski, A.P.; Avena-Bustillos, R.J.; Milczarek, R.R.; Du, W.X.; Glenn, G.M.; Orts, W.J. Torrefaction of Almond Shells: Effects of Torrefaction Conditions on Properties of Solid and Condensate Products. Ind. Crops Prod. 2016, 86, 40–48. [Google Scholar] [CrossRef]
- Chiou, B.S.; Valenzuela-Medina, D.; Bilbao-Sainz, C.; Klamczynski, A.K.; Avena-Bustillos, R.J.; Milczarek, R.R.; Du, W.X.; Glenn, G.M.; Orts, W.J. Torrefaction of Pomaces and Nut Shells. Bioresour. Technol. 2015, 177, 58–65. [Google Scholar] [CrossRef]
- Barskov, S.; Zappi, M.; Buchireddy, P.; Dufreche, S.; Guillory, J.; Gang, D.; Hernandez, R.; Bajpai, R.; Baudier, J.; Cooper, R.; et al. Torrefaction of Biomass: A Review of Production Methods for Biocoal from Cultured and Waste Lignocellulosic Feedstocks. Renew. Energy 2019, 142, 624–642. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, Z.; Diao, R.; Zhu, X. Combining Torrefaction Pretreatment and Co-Pyrolysis to Upgrade Biochar Derived from Bio-Oil Distillation Residue and Walnut Shell. Energy Convers. Manag. 2019, 199, 111970. [Google Scholar] [CrossRef]
- El Mashad, H.M.; Edalati, A.; Zhang, R.; Jenkins, B.M. Production and Characterization of Biochar from Almond Shells. Clean Technol. 2022, 4, 854–864. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M.; Straka, R. Combustion Process of Torrefied Wood Biomass. J. Therm. Anal. Calorim. 2017, 127, 1339–1349. [Google Scholar] [CrossRef]
- Malat’áková, J.; Jankovský, M.; Malat’Ák, J.; Velebil, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Evaluation of Small-Scale Gasification for CHP for Wood from Salvage Logging in the Czech Republic. Forests 2021, 12, 1448. [Google Scholar] [CrossRef]
- Irawan, A.; Latifah Upe, S.; Meity Dwi, I.P. Effect of Torrefaction Process on the Coconut Shell Energy Content for Solid Fuel. AIP Conf. Proc. 2017, 1826, 020010. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.S.; Sokhansanj, S.; Wright, C.T.; Boardman, R.D. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development; Idaho National Lab.: Idaho Falls, ID, USA, 2010. [CrossRef] [Green Version]
- Dinesha, P.; Kumar, S.; Rosen, M.A. Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Technol. 2019, 7, 1801011. [Google Scholar] [CrossRef]
- Chungcharoen, T.; Srisang, N. Preparation and Characterization of Fuel Briquettes Made from Dual Agricultural Waste: Cashew Nut Shells and Areca Nuts. J. Clean. Prod. 2020, 256, 120434. [Google Scholar] [CrossRef]
- Ujjinappa, S.; Sreepathi, L.K. Evaluation of Physico-Mechanical-Combustion Characteristics of Fuel Briquettes Made from Blends of Areca Nut Husk, Simarouba Seed Shell and Black Liquor. Int. J. Renew. Energy Dev. 2018, 7, 131–137. [Google Scholar] [CrossRef]
- Eurostat. Eurostat Energy, Transport and Environment Indicators, 2018th ed.; Office for Official Publications of the European Communities: Luxembourg, 2018; p. 232.
- McGranahan, G.; Leslie, C. Walnut. Fruit Breed; Springer: Berlin/Heidelberg, Germany, 2012; pp. 827–846. [Google Scholar] [CrossRef]
- Padulosi, S.; Hadj- Hassan, A. Towards a Comprehensive Documentation and Use of Pistacia Genetic Diversity in Central and West Asia, North Africa and Europe. In Proceedings of the IPGRI Workshop, Irbid, Jordan, 14–17 December 1998; p. 105. [Google Scholar]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.W. Arachis hypogaea. Aerial Flower and Subterranean Fruit. Am. J. Bot. 1950, 37, 802–815. [Google Scholar] [CrossRef]
- Estelle, L.; Loko, Y.; David, M.; Joelle, T.; Dieudonné, G.; Alexandre, D. Farmers’ Management of Peanut (Arachis hypogaea L.) Diversity, Their Varietal Preference Traits and Uses in Southern and Central Benin. J. Crop Sci. Biotechnol. 2020, 23, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Malaťák, J.; Passian, L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011, 57, 37–50. [Google Scholar] [CrossRef] [Green Version]
- ČSN ISO 1928 (441352) Stanovení Spalného Tepla. Available online: https://www.technicke-normy-csn.cz/csn-iso-1928-441352-205351.html (accessed on 26 August 2022).
- Tunklová, B.; Jeníček, L.; Malaťák, J.; Neškudla, M.; Velebil, J.; Hnilička, F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials 2022, 15, 8709. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Tsantili, E. Quality Attributes and Their Relations in Fresh Black Ripe ‘Kalamon’ Olives (Olea europaea L.) for Table Use—Phenolic Compounds and Total Antioxidant Capacity. Int. J. Food Sci. Technol. 2014, 49, 657–665. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Ci, K.C.; Indira, G. Quantitative Estimation of Total Phenolic, Flavonoids, Tannin and Chlorophyll Content of Leaves of Strobilanthes Kunthiana (Neelakurinji). J. Med. Plants Stud. 2016, 4, 282–286. [Google Scholar]
- Kocaçaliskan, I.; Turan, E.; Ertürk, Ü.; Demir, Y.; Terzi, I. Varietal and Time Dependent Differences in Juglone and Total Phenolic Contents of the Walnut (Juglans regia L.) Leaves. Prog. Nutr. 2020, 22, 193–198. [Google Scholar] [CrossRef]
- TAPPI. Standard & Test Methods. In TAPPI Standards: Regulations and Style Guidelines; TAPPI: Peachtree Corners, GA, USA, 2018. [Google Scholar]
- Seifert, K. Uber Ein Neues Verfahren Zur Schnellbestimmung der Rein-Cellulose. Das Pap. 1956, 10, 301–306. [Google Scholar]
- Wise, L.E.; Murphy, M.; Adieco, A.A.D. A Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and Studies on the Hemicelluloses. Pap. Trade J 1946, 122, 35–43. [Google Scholar]
- Malaťák, J.; Velebil, J.; Malaťáková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials 2022, 15, 7288. [Google Scholar] [CrossRef]
- Bradna, J.; Malaťák, J.; Hájek, D. The Properties of Wheat Straw Combustion and Use of Fly Ash as a Soil Amendment. Agron. Res. 2016, 14, 1257–1265. [Google Scholar]
- Malaták, J.; Velebil, J.; Bradna, J.; Gendek, A.; Tamelová, B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020, 23, 53–59. [Google Scholar] [CrossRef]
- Jenicek, L.; Neskudla, M.; Malatak, J.; Velebil, J.; Passian, L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021, 24, 166–172. [Google Scholar] [CrossRef]
- Jeníček, L.; Tunklová, B.; Malat’ák, J.; Neškudla, M.; Velebil, J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials 2022, 15, 6722. [Google Scholar] [CrossRef]
- Tamelová, B.; Malaťák, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Energy Utilization of Torrefied Residue from Wine Production. Materials 2021, 14, 1610. [Google Scholar] [CrossRef]
- Karimi, M.; Aminzadehsarikhanbeglou, E.; Vaferi, B. Robust Intelligent Topology for Estimation of Heat Capacity of Biochar Pyrolysis Residues. Measurement 2021, 183, 109857. [Google Scholar] [CrossRef]
- Dupont, C.; Chiriac, R.; Gauthier, G.; Toche, F. Heat Capacity Measurements of Various Biomass Types and Pyrolysis Residues. Fuel 2014, 115, 644–651. [Google Scholar] [CrossRef]
- Matok, H.; Leszczynski, B.; Chrzanowski, G.; Sempruch, C. Effects of Walnut Phenolics on Germination of Dandelion Seeds. Allelopath. J. 2009, 24, 177–182. [Google Scholar]
- Cosmulescu, S.; Trandafir, I.; Achim, G.; Baciu, A. Juglone Content in Leaf and Green Husk of Five Walnut (Juglans regia L.) Cultivars. Not. Bot. Horti Agrobot. 2011, 39, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, N.; Raji, F.; Rezakazemi, M.; Younas, M. Juglone Extraction from Walnut (Juglans regia L.) Green Husk by Supercritical CO2: Process Optimization Using Taguchi Method. J. Environ. Chem. Eng. 2020, 8, 103776. [Google Scholar] [CrossRef]
- Uslu, O.S.; Babur, E.; Alma, M.H.; Solaiman, Z.M. Walnut Shell Biochar Increases Seed Germination and Early Growth of Seedlings of Fodder Crops. Agriculture 2020, 10, 427. [Google Scholar] [CrossRef]
- Deenik, J.L.; Diarra, A.; Uehara, G.; Campbell, S.; Sumiyoshi, Y.; Antal, M.J., Jr. Charcoal Ash and Volatile Matter Effects on Soil Properties and Plant Growth in an Acid Ultisol. Soil Sci. 2011, 176, 336–345. [Google Scholar] [CrossRef]
- Buss, W.; Mašek, O. Mobile Organic Compounds in Biochar—A Potential Source of Contamination−phytotoxic Effects on Cress Seed (Lepidium sativum) Germination. J. Environ. Manag. 2014, 137, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Fetjah, D.; Ainlhout, L.F.E.; Ihssane, B.; Houari, A.; Idardare, Z.; Bouqbis, L. Biological, Physico-Chemical and Morphological Analyses of Four Biochars Derived from Agricultural Waste. J. Ecol. Eng. 2021, 22, 36–46. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Murphy, D.V.; Abbott, L.K. Biochars Influence Seed Germination and Early Growth of Seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Jalili, A. Reducing Power and Radical Scavenging Activities of Phenolic Extracts from Juglans Regia Hulls and Shells. Afr. J. Biotechnol. 2012, 11, 9040. [Google Scholar] [CrossRef]
- Han, H.; Wang, S.; Rakita, M.; Wang, Y.; Han, Q.; Xu, Q.; Han, H.; Wang, S.; Rakita, M.; Wang, Y.; et al. Effect of Ultrasound-Assisted Extraction of Phenolic Compounds on the Characteristics of Walnut Shells. Food Nutr. Sci. 2018, 9, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Queirós, C.S.G.P.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of Walnut, Almond, and Pine Nut Shells Regarding Chemical Composition and Extract Composition. Biomass Convers. Biorefin. 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Caballero-Valdés, E.; Santis-Bernal, J.; Jara-Quezada, J.; Fuentes-Viveros, L.; Zúñiga-Hansen, M.E. Potential of Solid Wastes from the Walnut Industry: Extraction Conditions to Evaluate the Antioxidant and Bioherbicidal Activities. Electron. J. Biotechnol. 2022, 58, 25–36. [Google Scholar] [CrossRef]
- Sadat, K.; Dolatabadi, M.; Dehghan, G.; Hosseini, S.; Esfahlan, A.J. Effect of Five Year Storage on Total Phenolic Content and Antioxidant Capacity of Almond (Amygdalus communis L.) Hull and Shell from Different Genotypes. Avicenna J. Phytomed. 2015, 5, 26. [Google Scholar]
- Rubin, E.M. Genomics of Cellulosic Biofuels. Nature 2008, 454, 841–845. [Google Scholar] [CrossRef]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged Thermal Fractionation for Segregation of Lignin and Cellulose Pyrolysis Products: An Experimental Study of Residence Time and Temperature Effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Seehra, M.S.; Pyapalli, S.K.; Poston, J.; Atta-Obeng, E.; Dawson-Andoh, B. Hydrothermal Conversion of Commercial Lignin to Carbonaceous Materials. J. Indian Acad. Wood Sci. 2015, 12, 29–36. [Google Scholar] [CrossRef]
List of Samples | Walnut | Pistachio | Peanut |
---|---|---|---|
Non-pyrolyzed | WAL0 | PIST0 | PEAN0 |
250 °C | WAL250 | PIST250 | PEAN250 |
300 °C | WAL300 | PIST300 | PEAN300 |
350 °C | WAL350 | PIST350 | PEAN350 |
450 °C | WAL450 | PIST450 | PEAN450 |
550 °C | WAL550 | PIST550 | PEAN550 |
Ash (% wt.) | Carbon (% wt.) | Hydrogen (% wt.) | Nitrogen (% wt.) | Sulfur (% wt.) | Oxygen (% wt.) | Net Calorific Value (MJ kg−1) | |
---|---|---|---|---|---|---|---|
WAL0 | 2.61 ± 0.14 a | 48.77 ± 0.72 b | 5.80 ± 0.10 a | 0.52 ± 0.02 a | 0.012 ± 0.002 | 42.28 | 18.66 |
WAL250 | 3.25 ± 0.19 a | 55.57 ± 0.8 c | 5.71 ± 0.08 a | 0.49 ± 0.03 a | 0.003 ± 0.001 | 34.98 | 20.14 |
WAL300 | 4.59 ± 1.33 ab | 67.13 ± 0.25 d | 5.34 ± 0.02 e | 0.57 ± 0.02 a | 0.005 ± 0.001 | 22.37 | 25.21 |
WAL350 | 6.81 ± 0.4 bc | 75.47 ± 1.48 e | 4.24 ± 0.01 d | 0.70 ± 0.00 b | 0.008 ± 0.001 | 12.77 | 26.13 |
WAL450 | 8.96 ± 0.8 cd | 82.81 ± 0.45 a | 3.41 ± 0.01 c | 0.78 ± 01.01 bc | 0.007 ± 0.001 | 4.04 | 28.85 |
WAL550 | 10.12 ± 0.2 d | 84.66 ± 1.9 a | 2.66 ± 0.01 b | 0.82 ± 0.00 c | 0.005 ± 0.001 | 1.74 | 30.55 |
Ash (% wt.) | Carbon (% wt.) | Hydrogen (% wt.) | Nitrogen (% wt.) | Sulphur (% wt.) | Oxygen (% wt.) | Net Calorific Value (MJ kg−1) | |
---|---|---|---|---|---|---|---|
PIST0 | 1.09 ± 0.07 a | 48.72 ± 0.08 a | 6.14 ± 0.02 f | 0.40 ± 0.02 a | 0.004 ± 0.001 | 43.65 | 17.58 |
PIST250 | 1.48 ± 0.11 ab | 54.96 ± 0.08 b | 5.85 ± 0.02 e | 0.43 ± 0.01 ab | 0.012 ± 0.001 | 37.26 | 20.17 |
PIST300 | 2.38 ± 0.18 bc | 66.83 ± 0.21 c | 5.26 ± 0.02 d | 0.49 ± 0.01 b | 0.009 ± 0.001 | 25.04 | 25.06 |
PIST350 | 2.80 ± 0.19 c | 77.11 ± 0.27 d | 4.30 ± 0.01 c | 0.57 ± 0.00 c | 0.012 ± 0.001 | 15.21 | 27.93 |
PIST450 | 4.33 ± 0.34 d | 83.88 ± 0.06 e | 3.44 ± 0.00 b | 0.62 ± 0.00 c | 0.018 ± 0.002 | 7.71 | 29.71 |
PIST550 | 4.84 ± 0.35 d | 89.03 ± 0.19 f | 2.69 ± 0.00 a | 0.72 ± 0.02 d | 0.011 ± 0.001 | 2.72 | 31.35 |
Ash (% wt.) | Carbon (% wt.) | Hydrogen (% wt.) | Nitrogen (% wt.) | Sulphur (% wt.) | Oxygen (% wt.) | Net Calorific Value (MJ kg−1) | |
---|---|---|---|---|---|---|---|
PEAN0 | 1.87 ± 0.02 a | 53.15 ± 0.14 a | 6.17 ± 0.03 a | 1.47 ± 0.04 b | 0.064 ± 0.005 | 37.27 | 19.93 |
PEAN250 | 2.15 ± 0.05 b | 56.87 ± 0.06 b | 6.07 ± 0.04 a | 1.59 ± 0.02 bcd | 0.037 ± 0.003 | 33.28 | 20.61 |
PEAN300 | 2.99 ± 0.01 c | 64.31 ± 0.1 c | 5.72 ± 0.03 e | 1.69 ± 0.04 cd | 0.044 ± 0.004 | 25.24 | 24.33 |
PEAN350 | 4.3 ± 0.1 d | 73.65 ± 0.17 d | 4.49 ± 0.01 d | 1.98 ± 0.05 a | 0.035 ± 0.004 | 15.55 | 26.38 |
PEAN450 | 6.04 ± 0.04 e | 78.68 ± 0.31 e | 3.31 ± 0.02 c | 1.93 ± 0.04 a | 0.040 ± 0.005 | 10.00 | 27.35 |
PEAN550 | 6.30 ± 0.06 f | 84.00 ± 0.18 f | 2.60 ± 0.02 b | 1.96 ± 0.04 a | 0.042 ± 0.004 | 5.09 | 28.78 |
WAL0 | WAL250 | WAL300 | WAL350 | WAL450 | WAL550 | |
---|---|---|---|---|---|---|
Mass flow of fuel for a heat output of 10 kW (kg h−1) | 2.14 | 1.99 | 1.59 | 1.53 | 1.39 | 1.31 |
Mass flow of fuel for a heat output 300 kW (kg h−1) | 64.30 | 59.58 | 47.61 | 45.92 | 41.60 | 39.27 |
Theoretical amount of O2 for complete combustion (kg kg−1) | 1.34 | 1.59 | 1.99 | 2.22 | 2.44 | 2.45 |
Theoretical amount of air for complete combustion (kg kg−1) | 5.78 | 6.85 | 8.59 | 9.59 | 10.52 | 10.57 |
Real mass amount of air (n = 1.91) (kg kg−1) | 11.37 | 13.38 | 16.70 | 18.31 | 20.09 | 20.19 |
Theoretical mass amount of dry flue gas (kg kg−1) | 6.16 | 7.21 | 8.95 | 10,1 | 10.98 | 11.09 |
Real mass amount of dry flue gas (n = 1.91) (kg kg−1) | 11.37 | 13.38 | 16,70 | 18.65 | 20.47 | 20.62 |
Theoretical mass amount of CO2 (kg kg−1) | 1.79 | 2.04 | 2.47 | 2.77 | 3.04 | 3.11 |
Theoretical mass amount of H2O (kg kg−1) | 0.75 | 0.79 | 0.82 | 0.76 | 0.73 | 0.66 |
Theoretical mass amount of N2 (kg kg−1) | 4.37 | 5.17 | 6.49 | 7.24 | 7.95 | 7.99 |
Theoretical mass amount of CO2 (% wt.) | 29.06 | 28.23 | 27.48 | 27.63 | 23.38 | 23.71 |
Pistachio Shells | PIST0 | PIST250 | PIST300 | PIST350 | PIST450 | PIST550 |
---|---|---|---|---|---|---|
Mass flow of fuel for a heat output of 10 kW (kg h−1) | 2.26 | 1.98 | 1.60 | 1.43 | 1.35 | 1.28 |
Mass flow of fuel for a heat output 300 kW (kg h−1) | 68.26 | 59.51 | 47.88 | 42.97 | 40.39 | 38.27 |
Theoretical amount of O2 for complete combustion (kg kg−1) | 1.35 | 1.56 | 1.95 | 2.25 | 2.44 | 2.56 |
Theoretical amount of air for complete combustion (kg kg−1) | 5.64 | 6.73 | 8.41 | 9.69 | 10.50 | 11.04 |
Real mass amount of air (n = 1.91) (kg kg−1) | 11.15 | 12.85 | 16.07 | 18.51 | 20.05 | 21.09 |
Theoretical mass amount of dry flue gas (kg kg−1) | 6.19 | 7.10 | 8.81 | 10.15 | 11.00 | 11.61 |
Real mass amount of dry flue gas (n = 1.91) (kg kg−1) | 11.45 | 13.16 | 16.39 | 18.88 | 20.47 | 21.56 |
Theoretical mass amount of CO2 (kg kg−1) | 1.79 | 2.02 | 2.45 | 2.83 | 3.08 | 3.27 |
Theoretical mass amount of H2O (kg kg−1) | 0.79 | 0.80 | 0.81 | 0.77 | 0.73 | 0.68 |
Theoretical mass amount of N2 (kg kg−1) | 4.41 | 5.08 | 6.36 | 7.32 | 7.93 | 8.34 |
Theoretical mass amount of CO2 (% wt.) | 28.84 | 28.39 | 27.83 | 27.86 | 27.95 | 28.13 |
Peanut Shells | PEAN0 | PEAN250 | PEAN300 | PEAN350 | PEAN450 | PEAN550 |
---|---|---|---|---|---|---|
Mass flow of fuel for a heat output of 10 kW (kg h−1) | 2.01 | 1.94 | 1.64 | 1.52 | 1.46 | 1.39 |
Mass flow of fuel for a heat output 300 kW (kg h−1) | 60.21 | 58.24 | 49.33 | 45.48 | 43.88 | 41.69 |
Theoretical amount of O2 for complete combustion (kg kg−1) | 1.54 | 1.67 | 1.92 | 2.17 | 2.26 | 2.40 |
Theoretical amount of air for complete combustion (kg kg−1) | 6.63 | 7.20 | 8.28 | 9.35 | 9.76 | 10.33 |
Real mass amount of air (n = 1.91) (kg kg−1) | 12.67 | 13.75 | 15.81 | 17.85 | 18.63 | 19.74 |
Theoretical mass amount of dry flue gas (kg kg−1) | 6.97 | 7.53 | 8.62 | 9.77 | 10.27 | 10.90 |
Real mass amount of dry flue gas (n = 1.91) (kg kg−1) | 12.95 | 14.02 | 16.08 | 18.20 | 19.06 | 20.21 |
Theoretical mass amount of CO2 (kg kg−1) | 1.95 | 2.09 | 2.60 | 2.70 | 2.89 | 3.08 |
Theoretical mass amount of H2O (kg kg−1) | 0.82 | 0.83 | 0.85 | 0.78 | 0.69 | 0.65 |
Theoretical mass amount of N2 (kg kg−1) | 5.02 | 5.45 | 6.26 | 7.07 | 7.38 | 7.82 |
Theoretical mass amount of CO2 (% wt.) | 27.96 | 27.68 | 27.35 | 27.63 | 28.10 | 28.26 |
Sample | TPC (mg g−1) | TFC (mg g−1) | TAA (mg g−1) | TAE (mg g−1) |
---|---|---|---|---|
WAL0 | 3.45 ± 0.12 c | 6.65 ± 0.55 c | 13.89 ± 0.83 c | 4.32 ± 0.1 d |
WAL250 | 9.85 ± 0.08 d | 15.48 ± 0.88 d | 39.49 ± 1.51 d | 13.49 ± 0.16 e |
WAL300 | 2.12 ± 0.06 b | 3.75 ± 0.17 b | 5.73 ± 0.18 b | 3.19 ± 0.26 c |
WAL350 | 0.16 ± 0.01 a | 1.4 ± 0.04 a | 0.89 ± 0.04 a | 1.62 ± 0.07 b |
WAL450 | 0.07 ± 0.01 a | 0.81 ± 0.04 a | 0.16 ± 0.00 a | 0.61 ± 0.23 a |
WAL550 | 0.04 ± 0.00 a | 0.62 ± 0.01 a | 0.07 ± 0.00 a | 0.41 ± 0.03 a |
PIST0 | 3.42 ± 0.10 c | 13.08 ± 0.10 c | 11.02 ± 0.01 c | 3.03 ± 0.08 c |
PIST250 | 11.77 ± 0.40 d | 20.46 ± 1.17 d | 47.75 ± 1.92 d | 15.56 ± 0.38 e |
PIST300 | 1.94 ± 0.05 b | 6.15 ± 0.02 b | 4.37 ± 0.06 b | 4 ± 0.06 d |
PIST350 | 0.13 ± 0.01 a | 1.10 ± 0.03 a | 1.14 ±0.07 ab | 1.38 ± 0.08 b |
PIST450 | 0.05 ± 0.00 a | 1.08 ± 0.04 a | 0.17 ± 0.01 a | 0.64 ± 0.06 ab |
PIST550 | 0.04 ± 0.00 a | 0.92 ± 0.04 a | 0.12 ± 0.01 a | 0.36 ± 0.02 a |
PEAN0 | 9.30 ± 0.13 e | 12.53 ± 0.11 e | 25.63 ± 0.53 d | 9.78 ± 0.03 f |
PEAN250 | 6.28 ± 0.21 d | 9.73 ± 0.21 d | 10.42 ± 0.57 b | 7.46 ± 0.13 e |
PEAN300 | 3.48 ± 0.02 c | 6.00 ± 0.04 c | 9.85 ± 0.51 b | 4.41 ± 0.14 d |
PEAN350 | 0.66 ± 0.02 b | 2.29 ± 0.13 ab | 2.32 ± 0.06 b | 1.57 ± 0.06 c |
PEAN450 | 0.14 ± 0.02 a | 1.08 ± 0.02 a | 0.42 ± 0.01 a | 0.81 ± 0.04 b |
PEAN550 | 0.07 ± 0.01 a | 0.98 ± 0.03 a | 0.13 ± 0.01 a | 0.38 ± 0.01 a |
Sample | Junglone (mg g−1) |
---|---|
non-pyrolyzed | 0.99 ± 0.00 e |
WAL250 | 0.88 ± 0.04 d |
WAL300 | 0.8 ± 0.00 a |
WAL350 | 0.77 ± 0.00 a |
WAL450 | 0.52 ± 0.00 c |
WAL550 | 0.29 ± 0.00 b |
Samples | Extractives | Holocellulose (wt. %) | Cellulose (wt. %) | Hemicellulose (wt. %) | Lignin (wt. %) |
---|---|---|---|---|---|
WAL0 | 4.27 ± 0.003 | 74.49 ± 0.074 | 3.28 ± 0.003 | 71.21 ± 0.071 | 18.38 ± 0.018 |
WAL250 | 0.10 ± 0.012 | 73.44 ± 8.372 | 6.38 ± 0.727 | 67.06 ± 7.645 | 21.40 ± 2.439 |
WAL300 | 0.46 ± 0.000 | 68.29 ± 0.007 | 10.55 ± 0.001 | 57.73 ± 0.006 | 24.29 ± 0.002 |
WAL350 | 0.31 ± 0.006 | 58.33 ± 1.143 | 10.05 ± 0.197 | 48.27 ± 0.946 | 27.18 ± 0.532 |
WAL450 | 0.06 ± 0.005 | 54.14 ± 4.250 | 12.16 ± 0.954 | 41.98 ± 3.296 | 28.83 ± 2.262 |
WAL550 | 0.02 ± 0.004 | 46.84 ± 10.248 | 10.69 ± 2.339 | 36.15 ± 7.909 | 36.66 ± 8.021 |
PIST0 | 1.10 ± 0.001 | 82.10 ± 0.049 | 4.84 ± 0.003 | 77.26 ± 0.046 | 8.08 ± 0.005 |
PIST250 | 4.52 ± 0.565 | 67.98 ± 8.490 | 8.00 ± 1000 | 59.96 ± 7.489 | 18.06 ± 2.256 |
PIST300 | 1.35 ± 0.114 | 63.91 ± 5.388 | 11.36 ± 0.958 | 52.55 ± 4.430 | 24.33 ± 2.051 |
PIST350 | 1.23 ± 0.026 | 48.38 ± 1.021 | 14.11 ± 0.298 | 34.25 ± 0.723 | 31.62 ± 0.667 |
PIST450 | 1.00 ± 0.012 | 42.80 ± 0.458 | 14.22 ± 0.152 | 28.58 ± 0.306 | 31.96 ± 0.342 |
PIST550 | 1.19 ± 0.073 | 38.78 ± 2.393 | 13.54 ± 0.836 | 25.23 ± 1.557 | 32.27 ± 1.991 |
PEAN0 | 5.94 ± 0.017 | 67.36 ± 0.202 | 6.77 ± 0.020 | 60.60 ± 0.181 | 20.52 ± 0.062 |
PEAN250 | 8.01 ± 0.074 | 61.49 ± 0.572 | 8.78 ± 0.081 | 52.71 ± 0.490 | 21.51 ± 0.200 |
PEAN300 | 6.42 ± 0.667 | 57.27 ± 5.945 | 10.77 ± 1.118 | 46.50 ± 4.827 | 24.83 ± 2.578 |
PEAN350 | 1.48 ± 0.022 | 54.70 ± 0.815 | 13.74 ± 0.204 | 40.96 ± 0.610 | 28.57 ± 0.426 |
PEAN450 | 0.27 ± 0.006 | 50.30 ± 1.066 | 13.74 ± 0.291 | 36.56 ± 0.775 | 28.53 ± 0.604 |
PEAN550 | 0.20 ± 0.033 | 42.18 ± 4.906 | 12.67 ± 1.473 | 29.52 ± 3.433 | 28.34 ± 3.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeníček, L.; Tunklová, B.; Malaťák, J.; Velebil, J.; Malaťáková, J.; Neškudla, M.; Hnilička, F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials 2023, 16, 2074. https://doi.org/10.3390/ma16052074
Jeníček L, Tunklová B, Malaťák J, Velebil J, Malaťáková J, Neškudla M, Hnilička F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials. 2023; 16(5):2074. https://doi.org/10.3390/ma16052074
Chicago/Turabian StyleJeníček, Lukáš, Barbora Tunklová, Jan Malaťák, Jan Velebil, Jitka Malaťáková, Michal Neškudla, and František Hnilička. 2023. "The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment" Materials 16, no. 5: 2074. https://doi.org/10.3390/ma16052074