Degradation and Protection of Materials from Cavitation Erosion: A Review
Abstract
:1. Introduction
2. Cavitation and Cavitation Erosion Phenomena
Residual Stresses | Material | Test Device | Reference |
---|---|---|---|
−380 MPa | 42 CrMo4 (AISI 4140) | Vibratory | [32] |
−200 MPa | Ck45 (AISI 1045) | Vibratory | [32] |
−550 MPa | 316L | Cavitating jet in a pressurized chamber | [33] |
−270 MPa | 316L | Cavitating jet in water | [33] |
−500 MPa | 316L | Cavitating jet in air | [33] |
−600 MPa | 316L | Vibratory | [34] |
−988 MPa | Ti-6Al-4V | Cavitation peening | [33] |
−650 MPa | AISI 4140 | Cavitation peening | [25] |
−420 MPa | Ti-Ni alloy (Ti: 50.7%, Ni: 49.3%, vol. frac.) | Water jet impact | [35] |
3. Cavitation Erosion of Solid Materials
4. Methods of Improvement of Cavitation Erosion Resistance
4.1. Thermo-Chemical Treatment
4.2. Mechanical Treatment (Machining)
4.3. Laser Processing
4.4. PVD Coating Deposition
4.5. HVOF/HVAF Coating Deposition
5. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noon, A.A.; Kim, M. Cavitation Erosion Francis Turbines―Review Sediment. Enegies 2021, 14, 1516. [Google Scholar] [CrossRef]
- Kuiper, G. Cavitation research and ship propeller design. Appl. Sci. Res. 1997, 58, 33–50. [Google Scholar] [CrossRef]
- Suslick, K.S.; Didenko, Y.; Fang, M.M.; Hyeon, T.; Kolbeck, K.J.; McNamara, W.B., III; Mdleleni, M.M.; Wong, M. Acoustic cavitation and its consequences. Philos. Trans. R. Soc. A 1999, 357, 335–353. [Google Scholar] [CrossRef]
- Karimi, A.; Martin, J.L. Cavitation erosion of materials. Int. Mater. Rev. 1986, 31, 1–26. [Google Scholar] [CrossRef]
- Van Terwisga, T.J.C.; Fitzsimmons, P.A.; Ziru, L.; Foeth, E.J. Cavitation Erosion―A review of physical mechanisms and erosion risk models. In Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, MI, USA, 16–20 August 2009; Volume 7, pp. 1–13. [Google Scholar]
- Sreedhar, B.K.; Albert, S.K.; Pandit, A.B. Cavitation damage: Theory and measurements―A review. Wear 2017, 372–373, 177–196. [Google Scholar] [CrossRef]
- Hattori, S.; Ishikura, R.; Zhang, Q. Construction of database on cavitation erosion and analyses of carbon steel data. Wear 2004, 257, 1022–1029. [Google Scholar] [CrossRef]
- Hattori, S.; Ishikura, R. Revision of cavitation erosion database and analysis of stainless steel data. Wear 2010, 268, 109–116. [Google Scholar] [CrossRef]
- Soyama, H. Cavitation peening: A review. Metals 2020, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Christopher, B.E. Cavitation and Bubble Dynamics; Oxford University Press Inc.: Oxford, UK, 1995; Volume 9, ISBN 0-19-509409-3. [Google Scholar]
- Kim, K.; Chahine, G.L.; Franc, J.-P.; Karimi, A. Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, 1st ed.; Kim, K., Chahine, G.L., Franc, J.-P., Karimi, A., Eds.; Springer International Publishing: Dordrecht, The Netherlands, 2014; Volume 106, ISBN 978-94-017-8538-9. [Google Scholar]
- Hammitt, F.G. Cavitation and Multiphase Flow Phenomena; McGraw-Hill Book Company: New York, NY, USA, 1980; ISBN 0070259070. [Google Scholar]
- Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation; Moreau, R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume 76, ISBN 1-4020-2232-8. [Google Scholar]
- Lindau, O.; Lauterborn, W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 2003, 479, 327–348. [Google Scholar] [CrossRef]
- Sonde, E.; Chaise, T.; Boisson, N.; Nelias, D. Modeling of cavitation peening: Jet, bubble growth and collapse, micro-jet and residual stresses. J. Mater. Process. Technol. 2018, 262, 479–491. [Google Scholar] [CrossRef]
- Plesset, M.; Chapman, R. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 1971, 47, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Lauterborn, W.; Bolle, H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 1975, 72, 391. [Google Scholar] [CrossRef]
- Philipp, A.; Lauterborn, W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 1998, 361, 75–116. [Google Scholar] [CrossRef]
- Field, J.E.; Camus, J.J.; Tinguely, M.; Obreschkow, D.; Farhat, M. Cavitation in impacted drops and jets and the effect on erosion damage thresholds. Wear 2012, 290–291, 154–160. [Google Scholar] [CrossRef]
- Momber, A.W. Cavitation damage to geomaterials in a flowing system. J. Mater. Sci. 2003, 38, 747–757. [Google Scholar] [CrossRef]
- Pain, A.; Hui Terence Goh, B.; Klaseboer, E.; Ohl, S.W.; Cheong Khoo, B. Jets in quiescent bubbles caused by a nearby oscillating bubble. J. Appl. Phys. 2012, 111. [Google Scholar] [CrossRef]
- Bourne, N.K. On stress wave interactions in liquid impact. Wear 2005, 258, 588–595. [Google Scholar] [CrossRef]
- Dular, M.; Požar, T.; Zevnik, J.; Petkovšek, R. High speed observation of damage created by a collapse of a single cavitation bubble. Wear 2019, 418–419, 13–23. [Google Scholar] [CrossRef]
- Tzanakis, I.; Eskin, D.G.; Georgoulas, A.; Fytanidis, D.K. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble. Ultrason. Sonochem. 2014, 21, 866–878. [Google Scholar] [CrossRef]
- Haosheng, C.; Jiang, L.; Darong, C.; Jiadao, W. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water. Wear 2008, 265, 692–698. [Google Scholar] [CrossRef]
- Maurin, A. Numerical Investigation of Degradation of 316L Steel Caused by Cavitation. Materials 2021, 14, 3131. [Google Scholar] [CrossRef] [PubMed]
- Hattori, S.; Hirose, T.; Sugiyama, K. Prediction method for cavitation erosion based on measurement of bubble collapse impact loads. Wear 2010, 269, 507–514. [Google Scholar] [CrossRef]
- Jones, I.R.; Edwards, D.H. An experimental study of the forces generated by the collapse of transient cavities in water. J. Fluid Mech. 1960, 7, 596–609. [Google Scholar] [CrossRef]
- Krella, A.K.; Zakrzewska, D.E. Cavitation Erosion―Phenomenon and Test Rigs. Adv. Mater. Sci. 2018, 18, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Krella, A.K.; Krupa, A. Effect of cavitation intensity on degradation of X6CrNiTi18-10 stainless steel. Wear 2018, 408–409, 180–189. [Google Scholar] [CrossRef]
- Fortes Patella, R.; Reboud, J.-L.; Archer, A. Cavitation damage measurement by 3D laser profilometry. Wear 2000, 246, 59–67. [Google Scholar] [CrossRef]
- Mathias, M.; Gocke, A.; Pohl, M. Residual stress texture and surface changes in steel induced by cavitation. Wear 1991, 150, 11–20. [Google Scholar] [CrossRef]
- Soyama, H. Key Factors and Applications of Cavitation Peening. Int. J. Peen. Sci. Technol. 2017, 1, 3–60. [Google Scholar]
- Gao, G.; Zhang, Z. Cavitation Erosion Behavior of 316L Stainless Steel. Tribol. Lett. 2019, 67, 1–12. [Google Scholar] [CrossRef]
- Zhuang, D.D.; Zhang, S.H.; Liu, H.X.; Chen, J. Cavitation erosion behaviors and damage mechanism of Ti-Ni alloy impacted by water jet with different standoff distances. Eng. Fail. Anal. 2022, 139, 106458. [Google Scholar] [CrossRef]
- Soyama, H. Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 2013, 297, 895–902. [Google Scholar] [CrossRef]
- Soyama, H.; Takakuwa, O. Enhancing the Aggressive Strength of a Cavitating Jet and Its Practical Application. J. Fluid Sci. Technol. 2011, 6, 510–521. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhu, J. Cavitation erosion of Fe-Mn-Si-Cr shape memory alloys. Wear 2004, 256, 66–72. [Google Scholar] [CrossRef]
- Krella, A.K.; Zakrzewska, D.E.; Marchewicz, A. The resistance of S235JR steel to cavitation erosion. Wear 2020, 452–453, 203295. [Google Scholar] [CrossRef]
- Wantang, F.; Yangzeng, Z.; Tianfu, J.; Mei, Y. Structural changes after cavitation erosion for a Cr-Mn-N stainless steel. Wear 1997, 205, 28–31. [Google Scholar] [CrossRef]
- Heathocock, C.J.; Protheroe, B.E.; Ball, A. Cavitation erosion of stainless steels. Wear 1982, 81, 311–327. [Google Scholar] [CrossRef]
- Kwok, C.T.; Man, H.C.; Cheng, F.T. Cavitation erosion of duplex and super duplex stainless steels. Scr. Mater. 1998, 39, 1229–1236. [Google Scholar] [CrossRef]
- Santos, L.L.; Cardoso, R.P.; Brunatto, S.F. Behavior of the reversed austenite in CA-6NM martensitic stainless steel under cavitation. Wear 2020, 454–455, 203322. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Luo, S.Z.; Ke, W. Cavitation erosion-corrosion behaviour of CrMnB stainless overlay and 0Cr13Ni5Mo stainless steel in 0.5 M NaCl and 0.5 M HCL solutions. Tribol. Int. 2008, 41, 1181–1189. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Cui, Y. The cavitation behavior of a metastable Cr-Mn-Ni steel. Wear 2000, 240, 231–234. [Google Scholar] [CrossRef]
- Szala, M.; Chocyk, D.; Skic, A.; Kamiński, M.; Macek, W.; Turek, M. Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed stellite 6. Materials 2021, 14, 2324. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.L.; Cardoso, R.P.; Brunatto, S.F. Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation. Wear 2020, 462–463, 203522. [Google Scholar] [CrossRef]
- Hattori, S.; Nakao, E. Cavitation erosion mechanism and quantitative evaluation based on erosion particles. Wear 2002, 249, 839–845. [Google Scholar] [CrossRef]
- Shin, G.S.; Yun, J.Y.; Park, M.C.; Kim, S.J. Effect of mechanical properties on cavitation erosion resistance in γ → α′ phase transformable Fe-Cr-C-Mn alloys. Tribol. Lett. 2015, 57, 1–5. [Google Scholar] [CrossRef]
- Wantang, F.; Yangzeng, Z.; Xiaokui, H. Resistance of a high nitrogen austenitic steel to cavitation erosion. Wear 2001, 249, 788–791. [Google Scholar] [CrossRef]
- Peng, K.; Kang, C.; Li, G.; Matsuda, K.; Soyama, H. Effect of heat treatment on the cavitation erosion resistance of stainless steel. Mater. Corros. 2018, 69, 536–544. [Google Scholar] [CrossRef]
- Hattori, S.; Kitagawa, T. Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data. Wear 2010, 269, 443–448. [Google Scholar] [CrossRef]
- Wu, S.K.; Lin, H.C.; Yeh, C.H. A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy. Wear 2000, 244, 85–93. [Google Scholar] [CrossRef]
- Wang, L.; Mao, J.; Xue, C.; Ge, H.; Dong, G.; Zhang, Q.; Yao, J. Cavitation-Erosion behavior of laser cladded Low-Carbon Cobalt-Based alloys on 17-4PH stainless steel. Opt. Laser Technol. 2023, 158, 108761. [Google Scholar] [CrossRef]
- Tzanakis, I.; Bolzoni, L.; Eskin, D.G.; Hadfield, M. Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 2193–2206. [Google Scholar] [CrossRef] [Green Version]
- Howard, R.L.; Ball, A. Mechanisms of cavitation erosion of TiAl -based titanium alumine intermetalic alloys. Acta Metall. 1996, 44, 3157–3168. [Google Scholar]
- Liu, Z.; Khan, A.; Shen, M.; Zhu, S.; Zeng, C.; Wang, F.; Fu, C. Microstructure and cavitation erosion resistance of arc ion plating NiCrAlY coating on the 304L stainless steel. Tribol. Int. 2022, 173, 107618. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, Y.G.; Liu, C.S.; Yao, Z.M.; Ke, W. Cavitation erosion behavior of Cr-Mn-N stainless steels in comparison with 0Cr13Ni5Mo stainless steel. Wear 2003, 254, 713–722. [Google Scholar] [CrossRef]
- Basumatary, J.; Nie, M.; Wood, R.J.K. The Synergistic Effects of Cavitation Erosion–Corrosion in Ship Propeller Materials. J. Bio- Tribo-Corrosion 2015, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.T.; Yeh, C.H.; He, J.L.; Chen, K.C. Cavitation erosion and corrosion behavior of Ni-Al intermetallic coatings. Wear 2003, 255, 162–169. [Google Scholar] [CrossRef]
- Abreu, M.; Elfsberg, J.; Jonsson, S. Cavitation erosion behavior of austempered ductile irons of increasing hardness. Wear 2021, 484–485, 204036. [Google Scholar] [CrossRef]
- Mitelea, I.; Bena, T.; Bordeasu, I.; Craciunescu, C.M. Relationships between microstructure, roughness parameters and ultrasonic cavitation erosion behaviour of nodular cast iron, EN-GJS-400-15. Rev. Chim. 2018, 69, 612–617. [Google Scholar] [CrossRef]
- Qin, Z.; Li, X.; Xia, D.H.; Zhang, Y.; Feng, C.; Wu, Z.; Hu, W. Effect of compressive stress on cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy. Ultrason. Sonochem. 2022, 89, 106143. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, H.; Yang, R.; Zhang, H.; Yu, M.; Zhou, P.; Li, H.; Chen, X. Behavior of the hard phases of copper alloys subjected to cavitation erosion investigated by SEM observation. Tribol. Int. 2022, 174, 107771. [Google Scholar] [CrossRef]
- Si, C.; Sun, W.; Tian, Y.; Cai, J. Cavitation erosion resistance enhancement of the surface modified 2024T351 Al alloy by ultrasonic shot peening. Surf. Coatings Technol. 2023, 452, 129122. [Google Scholar] [CrossRef]
- Jonda, E.; Szala, M.; Sroka, M.; Łatka, L.; Walczak, M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Appl. Surf. Sci. 2023, 608, 155071. [Google Scholar] [CrossRef]
- Pedzich, Z.; Jasionowski, R.; Ziabka, M. Cavitation wear of structural oxide ceramics and selected composite materials. J. Eur. Ceram. Soc. 2014, 34, 3351–3356. [Google Scholar] [CrossRef]
- Bracke, L.; Kestens, L.; Penning, J. Direct observation of the twinning mechanism in an austenitic Fe-Mn-C steel. Scr. Mater. 2009, 61, 220–222. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I. V Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Mitelea, I.; Bordeaşu, I.; Pelle, M.; Crəciunescu, C. Ultrasonic cavitation erosion of nodular cast iron with ferrite-pearlite microstructure. Ultrason. Sonochem. 2015, 23, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Chi, P.; Chaoyue, Z.; Qinfeng, L.; Shilong, Z.; Yu, S.; Hairui, L.; Jianhong, F. Erosion characteristics and failure mechanism of reservoir rocks under the synergistic effect of ultrasonic cavitation and micro-abrasives. Adv. Powder Technol. 2021, 32, 4391–4407. [Google Scholar] [CrossRef]
- Dojcinovic, M.; Eric, O.; Rajnovic, D.; Sidanin, L.; Balos, S. The morphology of ductile cast iron surface damaged by cavitation. Metall. Mater. Eng. 2012, 18, 165–176. [Google Scholar]
- Bena, T.; Mitelea, I.; Bordeau, I.; Crǎciunescu, C.M. Roughness Parameters during Cavitation Exposure of Nodular Cast Iron with Ferrite-Pearlite Microstructure. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012011. [Google Scholar] [CrossRef] [Green Version]
- Bordeasu, I.; Popoviciu, M.O.; Ghera, C.; Micu, L.M.; Pirvulescu, L.D.; Bena, T. The use of Rz roughness parameter for evaluation of materials behavior to cavitation erosion. IOP Conf. Ser. Mater. Sci. Eng. 2018, 294, 012020. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Hokkirigawa, K.; Oba, R.; Matsudaira, Y. Developing Stages of Ultrasonically Produced Cavitation Erosion and Corresponding Surface Roughness. JSME Int. J. Ser. 2 Fluids Eng. heat Transf. Power Combust. Thermophys. Prop. 1990, 33, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Fortes Patella, R.; Choffat, T.; Reboud, J.L.; Archer, A. Mass loss simulation in cavitation erosion: Fatigue criterion approach. Wear 2013, 300, 205–215. [Google Scholar] [CrossRef]
- Franc, J.P.; Riondet, M.; Karimi, A.; Chahine, G.L. Material and velocity effects on cavitation erosion pitting. Wear 2012, 274–275, 248–259. [Google Scholar] [CrossRef]
- Chiu, K.Y.; Cheng, F.T.; Man, H.C. Evolution of surface roughness of some metallic materials in cavitation erosion. Ultrasonics 2005, 43, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Bregliozzi, G.; Ahmed, S.I.U.; Di Schino, A.; Kenny, J.M.; Haefke, H. Cavitation erosion and friction behavior of stainless steel as a function of grain size. J. Mater. Sci. Lett. 2003, 782, 235–240. [Google Scholar] [CrossRef]
- Bregliozzi, G.; Di Schino, A.; Ahmed, S.I.U.; Kenny, J.M.; Haefke, H. Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear 2005, 258, 503–510. [Google Scholar] [CrossRef]
- Zasada, D.; Sienkiewicz, J.A.; Jasionowski, R. Grain size influences the corrosion and cavitation of Ni3Al intermetallic alloys. Metalurgija 2015, 54, 47–50. [Google Scholar]
- Lo, K.H.; Kwok, C.T.; Wang, K.Y.; Ai, W. Implications of solution treatment on cavitation erosion and corrosion resistances and synergism of austenitic stainless steel. Wear 2017, 392–393, 159–166. [Google Scholar] [CrossRef]
- Li, D.G.; Chen, D.R.; Liang, P. Enhancement of cavitation erosion resistance of 316 L stainless steel by adding molybdenum. Ultrason. Sonochem. 2017, 35, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Korobov, Y.S.; Alwan, H.L.; Filippov, M.A.; Soboleva, N.N.; Alani, I.A.; Estemirova, S.K.; Makarov, A.V.; Sirosh, V.A. The effect of martensitic transformation on the cavitation erosion resistance of a TIG-deposited Fe-Cr-C-Al-Ti layer. Surf. Coatings Technol. 2021, 421, 127391. [Google Scholar] [CrossRef]
- Mitelea, I.; Ghera, C.; Bordeaşu, I.; Crəciunescu, C.M. Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel. Int. J. Mater. Res. 2015, 106, 391–397. [Google Scholar] [CrossRef]
- Allenstein, A.N.; Lepienski, C.M.; Buschinelli, A.J.A.; Brunatto, S.F. Plasma nitriding using high H2 content gas mixtures for a cavitation erosion resistant steel. Appl. Surf. Sci. 2013, 277, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.C.; Tschiptschin, A.P.; Scandian, C. Low temperature plasma nitriding of a Co30Cr19Fe alloy for improving cavitation erosion resistance. Wear 2019, 426–427, 581–588. [Google Scholar] [CrossRef]
- Roa, C.V.; Valdes, J.A.; Larrahondo, F.; Rodríguez, S.A.; Coronado, J.J. Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel. J. Mater. Eng. Perform. 2021, 30, 7195–7212. [Google Scholar] [CrossRef]
- Godoy, C.; Mancosu, R.D.; Lima, M.M.; Brandão, D.; Housden, J.; Avelar-Batista, J.C. Influence of plasma nitriding and PAPVD Cr1-xNx coating on the cavitation erosion resistance of an AISI 1045 steel. Surf. Coatings Technol. 2006, 200, 5370–5378. [Google Scholar] [CrossRef]
- Oliveira, D.B.; Franco, A.R.; Bozzi, A.C. Influence of low temperature plasma carbonitriding on cavitation erosion resistance of the Stellite 250 alloy―A preliminary evaluation. Wear 2021, 476, 203653. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Li, Z.; Zhu, S.; Yang, X. Surface modification by gas nitriding for improving cavitation erosion resistance of CP-Ti. Appl. Surf. Sci. 2014, 298, 164–170. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Y.; Wu, G.; Li, L.; Yao, J.; Zhang, Q. The microstructure and cavitation erosion resistance of Ti6Al4V alloy treated by laser gas nitriding with scanning galvanometer. Opt. Laser Technol. 2022, 153, 108270. [Google Scholar] [CrossRef]
- Saenz-Betancourt, C.C.; Rodríguez, S.A.; Coronado, J.J. Effect of boronising on the cavitation erosion resistance of stainless steel used for hydromachinery applications. Wear 2022, 498–499, 204330. [Google Scholar] [CrossRef]
- Muñoz-Cubillos, J.; Coronado, J.J.; Rodríguez, S.A. On the cavitation resistance of deep rolled surfaces of austenitic stainless steels. Wear 2019, 428–429, 24–31. [Google Scholar] [CrossRef]
- Selvam, K.; Mandal, P.; Grewal, H.S.; Arora, H.S. Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel. Ultrason. Sonochem. 2018, 44, 331–339. [Google Scholar] [CrossRef]
- Dubé, D.; Fiset, M.; Laliberté, R.; Simoneau, R. Cavitation resistance improvement of IRECA steel via laser processing. Mater. Lett. 1996, 28, 93–99. [Google Scholar] [CrossRef]
- Man, H.C.; Kwok, C.T.; Yue, T.M. Cavitation erosion and corrosion behaviour of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061. Surf. Coat. Technol. 2000, 132, 11–20. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.H.; Luo, K.Y.; Zhang, Y.K.; Zhao, Y.; Huang, J.Y.; Wu, X.D.; Zhou, C. Tensile property of ANSI 304 stainless steel weldments subjected to cavitation erosion based on treatment of laser shock processing. Materials 2018, 11, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Z.; Jiao, J.; Zhou, W.; Yang, Y.; Chen, L.; Liu, H.; Sun, Y.; Ren, X. Improvement in cavitation erosion resistance of AA5083 aluminium alloy by laser shock processing. Surf. Coat. Technol. 2019, 377, 124799. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cheng, W.; Shao, Y.K.; Luo, K.Y.; Lu, J.Z. Cavitation erosion behaviour of AISI 420 stainless steel subjected to laser shock peening as a function of the coverage layer in distilled water and water-particle solutions. Wear 2021, 470–471, 203611. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, X.; Cao, S.; Wang, D.; Zhu, Q.; Lei, Y. Effect of Y2O3 addition on the microstructure and liquid LBE cavitation erosion behaviors of Fe-Cr-Al-Ti-C-xY2O3 laser clade coatings. J. Nucl. Mater. 2022, 572, 154030. [Google Scholar] [CrossRef]
- Yang, R.; Huang, N.; Tian, Y.; Qin, J.; Lu, P.; Chen, H.; Li, H.; Chen, X. Insights into the exceptional cavitation erosion resistance of laser surface melted Ni-WC composites: The effects of WC morphology and distribution. Surf. Coat. Technol. 2022, 444, 128685. [Google Scholar] [CrossRef]
- Xu, Z.; Tian, Y.; Liu, X.; Yang, R.; Li, H.; Chen, X. Microstructure evolution of the laser surface melted WC-Ni coatings exposed to cavitation erosion. Tribol. Int. 2022, 173, 107615. [Google Scholar] [CrossRef]
- Krella, A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review. Coatings 2020, 10, 921. [Google Scholar] [CrossRef]
- Krella, A. Cavitation erosion of TiN and CrN coatings deposited on different substrates. Wear 2013, 297, 992–997. [Google Scholar] [CrossRef]
- Ma, D.; Harvey, T.J.; Wellman, R.G.; Ehiasarian, A.P.; Hovsepian, P.E.; Sugumaran, A.A.; Purandare, Y.P.; Wood, R.J.K. Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMS. J. Alloys Compd. 2019, 788, 719–728. [Google Scholar] [CrossRef]
- Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation erosion and slidingwear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, S.; Shen, M.; Jia, Y.; Wang, W.; Wang, F. Microstructure and cavitation erosion behavior of sputtered NiCrAlTi coatings with and without N incorporations. J. Mater. Sci. Technol. 2020, 54, 211–222. [Google Scholar] [CrossRef]
- Momeni, S.; Tillmann, W.; Pohl, M. Composite cavitation resistant PVD coatings based on NiTi thin films. Mater. Des. 2016, 110, 830–838. [Google Scholar] [CrossRef]
- Krella, A.K. The new parameter to assess cavitation erosion resistance of hard PVD coatings. Eng. Fail. Anal. 2011, 18, 855–867. [Google Scholar] [CrossRef]
- Krella, A.K. Cavitation erosion resistance of Ti/TiN multilayer coatings. Surf. Coat. Technol. 2013, 228, 115–123. [Google Scholar] [CrossRef]
- Krella, A.K. Cavitation erosion resistance parameter of hard CAVD coatings. Prog. Org. Coat. 2011, 70, 318–325. [Google Scholar] [CrossRef]
- Krella, A. The influence of TiN coatings properties on cavitation erosion resistance. Surf. Coat. Technol. 2009, 204, 263–270. [Google Scholar] [CrossRef]
- Krella, A.; Marchewicz, A. Effect of mechanical properties of CrN/CrCN coatings and uncoated 1.402 stainless steel on the evolution of degradation and surface roughness in cavitation erosion. Tribol. Int. 2023, 177, 107991. [Google Scholar] [CrossRef]
- Szala, M.; Walczak, M.; Świetlicki, A. Effect of microstructure and hardness on cavitation erosion and dry sliding wear of HVOF deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa coatings. Materials 2022, 15, 93. [Google Scholar] [CrossRef]
- Ding, X.; Ke, D.; Yuan, C.; Ding, Z.; Cheng, X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings 2018, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Varis, T.; Mäkelä, A.; Suhonen, T.; Laurila, J.; Vuoristo, P. Integrity of APS, HVOF and HVAF sprayed NiCr and NiCrBSi coatings based on the tensile stress-strain response. Surf. Coat. Technol. 2023, 452, 129068. [Google Scholar] [CrossRef]
- Szala, M.; Walczak, M.; Łatka, L.; Gancarczyk, K.; Özkan, D. Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying. Adv. Mater. Sci. 2020, 20, 26–38. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.; Zhang, J.; Zheng, Y.; Qin, Y.; Lin, J. Ultrasonic cavitation erosion of high-velocity oxygen-fuel (HVOF) sprayed near-nanostructured WC–10Co–4Cr coating in NaCl solution. Ultrason. Sonochem. 2015, 26, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Ang, A.S.M.; Mahajan, D.K.; Singh, H. Cavitation erosion resistant nickel-based cermet coatings for monel K-500. Tribol. Int. 2021, 159, 106954. [Google Scholar] [CrossRef]
- Taillon, G.; Pougoum, F.; Lavigne, S.; Ton-That, L.; Schulz, R.; Bousser, E.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.E. Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 2016, 364–365, 201–210. [Google Scholar] [CrossRef]
- Qiao, L.; Wu, Y.; Hong, S.; Zhang, J.; Shi, W.; Zheng, Y. Relationships between spray parameters, microstructures and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amorphous/nanocrystalline coatings. Ultrason. Sonochem. 2017, 39, 39–46. [Google Scholar] [CrossRef]
- Ding, X.; Cheng, X.D.; Yu, X.; Li, C.; Yuan, C.Q.; Ding, Z. xiong Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2018, 28, 487–494. [Google Scholar] [CrossRef]
- Lamana, M.S.; Pukasiewicz, A.G.M.; Sampath, S. Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear 2018, 398–399, 209–219. [Google Scholar] [CrossRef]
- Hauer, M.; Gärtner, F.; Krebs, S.; Klassen, T.; Watanabe, M.; Kuroda, S.; Krömmer, W.; Henkel, K.M. Process Selection for the Fabrication of Cavitation Erosion-Resistant Bronze Coatings by Thermal and Kinetic Spraying in Maritime Applications. J. Therm. Spray Technol. 2021, 30, 1310–1328. [Google Scholar] [CrossRef]
- Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 2005, 258, 768–775. [Google Scholar] [CrossRef]
- Silveira, L.L.; Pukasiewicz, A.G.M.; de Aguiar, D.J.M.; Zara, A.J.; Björklund, S. Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings. Surf. Coat. Technol. 2019, 374, 910–922. [Google Scholar] [CrossRef]
- Matikainen, V.; Koivuluoto, H.; Vuoristo, P. A study of Cr3C2-based HVOF- and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance. Wear 2020, 446–447, 203188. [Google Scholar] [CrossRef]
- Matikainen, V.; Rubio Peregrina, S.; Ojala, N.; Koivuluoto, H.; Schubert, J.; Houdková; Vuoristo, P. Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surf. Coat. Technol. 2019, 370, 196–212. [Google Scholar] [CrossRef]
Micro-Jet Velocity | Method of Determining | Reference |
---|---|---|
130–170 m/s | High-speed camera and calculation | [16] |
35–120 m/s | High-speed camera | [17] |
25–151 m/s | High-speed camera | [18] |
200–500 m/s | High-speed camera | [19] |
500 m/s | Measurements | [20] |
30–48 m/s | High-speed camera | [14] |
75–250 m/s | High-speed camera | [21] |
400–430 m/s | High-speed camera | [22] |
48–175 m/s | High-speed camera | [23] |
200–700 m/s | High-speed camera | [24] |
755 m/s | Calculation | [25] |
877 m/s | Calculation | [15] |
>200 m/s | Calculation | [26] |
Material | Structure | Test Device | Erosion Rate/ Time of Testing | Hardness | Reference |
---|---|---|---|---|---|
BS 431S29 quenched from 1040 °C and tempered at 200 °C | Martensite | Vibratory | 0.094 mm3/h 5 h | 427 HV | [41] |
BS 431S29 quenched from 1040 °C and tempered at 300 °C | Martensite | Vibratory | 0.122 mm3/h 5 h | 406 HV | [41] |
BS 431S29 quenched from 1040 °C and tempered at 400 °C | Martensite | Vibratory | 0.086 mm3/h 5 h | 423 HV | [41] |
BS 431S29 quenched from 1040 °C and tempered at 500 °C | Martensite | Vibratory | 0.208 mm3/h 5 h | 325 HV | [41] |
BS 431S29 quenched from 1040 °C and tempered at 600 °C | Martensite | Vibratory | 0.302 mm3/h 5 h | 262 HV | [41] |
DIN 4112 quenched from 1040 °C and tempered at 200 °C | Martensite | Vibratory | 0.02 mm3/h 5 h | 636 HV | [41] |
DIN 4112 quenched from 1040 °C and tempered at 300 °C | Martensite | Vibratory | 0.038 mm3/h 5 h | 577 HV | [41] |
DIN 4112 quenched from 1040 °C and tempered at 400 °C | Martensite | Vibratory | 0.042 mm3/h 5 h | 531 HV | [41] |
DIN 4112 quenched from 1040 °C and tempered at 500 °C | Martensite | Vibratory | 0.062 mm3/h 5 h | 463 HV | [41] |
DIN 4112 quenched from 1040 °C and tempered at 600 °C | Martensite | Vibratory | 0.112 mm3/h 5 h | 330 HV | [41] |
17-4PH stainless steels | Martensite | Vibratory | 1.03 mm3/h 1 h | 360 HV | [54] |
13Cr–5Ni–Mo | b.c.c. martensite | Rotating disk, 45 m/ | 0.07 mm3/h 48 h | 450 HV | [38] |
13Cr–5Ni–Mo | b.c.c. martensite | Rotating disk, 34 m/ | 0.009 mm3/h 48 h | 450 HV | [38] |
AISI W1 (0.96 wt.%C, 0.46 wt.% Mn, 0.18wt% Cr, 0.2wt.% Ni, Fe-rest) | Martensite | Vibratory | 0.006 mm3/h 8 h | 540 HV | [55] |
AISI 52100 chromium steel | Martensite with spheroidal carbides | Vibratory | 0.036 mm3/h 8 h | 860 HV | [55] |
0Cr13Ni6Mo steel Fe-11.9 wt.%Cr-0.36 wt.%Mn-6.1 wt.%Ni | Martensite and retained austenite | Rotating disk, 45 m/ | 0.115 mm3/h for 20 h 0.171 mm3/h for 30 h | - | [50] |
AISI 1020 low-carbon steel | Tempered martensite with small amounts of ferrite and retained austenite | Vibratory | 0.01 mm3/h 8 h | 350 HV | [55] |
AISI 1085 high-carbon steel | bainite and ferrite in a matrix of tempered martensite. | Vibratory | 0.0058 mm3/h 8 h | 865 HV | [55] |
0Cr16Ni5Mo steel Fe-15.0 wt.%Cr-0.45 wt.%Mn-5.0 wt.%Ni | Martensite and ferrite | Rotating disk, 45 m/ | 0.083 mm3/h for 20 h 0.116 mm3 /h for 30 h | - | [50] |
Fe–20 wt.%Mn–6 wt.%Si–7 wt.%Cr-B | 71.4% h.c.p. martensite and austenite | Rotating disk, 45 m/ | 0.019 mm3/h 48 h | 220 HV | [38] |
Fe–20 wt.%Mn–6 wt.%Si– 7 wt.%Cr-B | 71.4% h.c.p. martensite and austenite | Rotating disk, 34 m/ | 0.011 mm3/h 48 h | 220 HV | [38] |
Fe–20 wt.%Mn–6 wt.%Si– 7 wt.%Cr-A | 92.7% austenite and h.c.p. martensite | Rotating disk, 45 m/ | 0.016 mm3/h 48 h | 208 HV | [38] |
Fe–20 wt.%Mn–6 wt.%Si– 7 wt.%Cr-A | 92.7% austenite and h.c.p. martensite | Rotating disk, 34 m/ | 0.01 mm3/h 48 h | 208 HV | [38] |
AISI 304 hot rolled and annealed | Austenite | Vibratory | 0.14 mm3/h 5 h | 194 HV | [41] |
AISI 304 | Austenite | Vibratory | 0.78 mm3/h 20 h | 177 HV | [56] |
AISI 304 | Austenite | Vibratory | 2.31 mm3/h 5 h | 246 HV | [53] |
AISI 304L | Austenite | Vibratory 20 kHz, 60 µm | 0.159 mm3/h 5 h | 5.34 GPa (510 HV) | [57] |
AISI 316 hot rolled and annealed | Austenite | Vibratory | 0.35 mm3/h 5 h | 194 HV | [41] |
Ni-based-SFAc | Austenite | Vibratory | 0.77 mm3/h 5 h | 920 HV | [53] |
Fe-0.58 wt.%Mn-5.6 wt.%Ni-12.6 wt.%Cr-0.72 wt.%Mo | Austenite | Vibratory 20 kHz, 60 µm | 2.1 mm3/h 5 h | 298 HB (300 HV) | [58] |
Fe-13.9 wt.%Mn-0.216 wt.%Ni-17.3 wt.%Cr- 2 wt.%Mo | Austenite | Vibratory 20 kHz, 60 µm | 1.31 mm3/h 5 h | 240 HB (247 HV) | [58] |
Fe-13 wt.%Mn-1.9 wt.%Ni- 17 wt.%Cr-1.5 wt.%Mo | Austenite | Vibratory 20 kHz, 60 µm | 0.26 mm3/h 5 h | 211 HB (218 HV) | [58] |
18 wt.%Mn18 wt.%Cr 0.5 wt.%N steel | Austenite | Rotating disk, 45 m/s | 0.064 mm3/h for 20 h | 254 HV | [50] |
Fe-18.51 wt.%Cr-18.71 wt.%Mn-0.52 wt.%N | Austenite | Rotating disk, 45 m/s | 0.047 mm3/h for 30 h | 254 HV | [50] |
Fe–25 wt.%Mn–6 wt.%Si– 7 wt.%Cr | Austenite | Rotating disk, 45 m/ | 0.096 mm3/h 48 h | 215 HV | [38] |
Fe–21 wt.%Mn–6 wt.%Si– 9 wt.%Cr | Austenite | Rotating disk, 45 m/ | 0.014 mm3/h 48 h | 211 HV | [38] |
Fe–25 wt.%Mn–6 wt.%Si– 7 wt.%Cr | Austenite | Rotating disk, 34 m/ | 0.005 mm3 /h 48 h | 215 HV | [38] |
Fe–21 wt.%Mn–6 wt.%Si– 9 wt.%Cr | Austenite | Rotating disk, 34 m/ | 0.009 mm3 /h 48 h | 211 HV | [38] |
AISI 430 hot rolled | Ferrite | Vibratory | 7.44 mm3/h 5 h | 180 HV | [41] |
AISI 409 hot rolled | Ferrite | Vibratory | 4.66 mm3/h 5 h | 129 HV | [41] |
3CR12 annealed at 700 °C | Ferrite | Vibratory | 2.5 mm3/h 5 h | 165 HV | [41] |
3CR12 annealed at 800 °C | Ferrite | Vibratory | 1.422 mm3/h 5 h | 141 HV | [41] |
3CR12 annealed at 900 °C | Ferrite | Vibratory | 0.834 mm3/h 5 h | 167 HV | [41] |
2205 duplex steel | Austenite and ferrite | Vibratory 20 kHz, 80 µm | 0.115 mm3/h 1 h | 233 HV | [59] |
S235 JR | Ferrite and perlite | Cavitation tunnel, 2.3 m/s | 0.176 mm3/h 4 h | 148.5 HV | [39] |
S235 JR | Ferrite and perlite | Cavitation tunnel, 2.3 m/s | 0.74 mm3/h 4 h | 106 HV | [39] |
AISI 1045 | Ferrite and perlite | Vibratory | 1.92 mm3/h 2 h | - | [60] |
Austempered ductile iron (ADI) | nodular graphite in ausferrite | Vibratory | 1.154 mm3/h 4 h | 313 HV | [61] |
Austempered ductile iron (ADI) | nodular graphite in ausferrite | Vibratory | 0.718 mm3/h 4 h | 364 HV | [61] |
Austempered ductile iron (ADI) | nodular graphite in ausferrite | Vibratory | 0.449 mm3/h 4 h | 523 HV | [61] |
cast iron EN-GJS-400-15, (3.57 wt.% C, 2.51wt.% Si, 0.23 wt.% Mn, Fe = res) | ferrite–perlite matrix graphite nodules with surrounding ferrite areas | Vibratory | 12.04 mm3/h 165 min | 212.8 HV | [62] |
cast iron EN-GJS-400-15, (3.57 wt.% C, 2.51wt.% Si, 0.23 wt.% Mn, Fe = res) | ferrite–perlite matrix graphite nodules with surrounding ferrite areas | Vibratory | 6.68 mm3/h 165 min | 178.7 HV | [62] |
cast iron EN-GJS-400-15, (3.57 wt.% C, 2.51wt.% Si, 0.23 wt.% Mn, Fe = res) | ferrite–perlite matrix graphite nodules with surrounding ferrite areas | Vibratory | 3.67 mm3/h 165 min | 344.6 HV | [62] |
cast iron EN-GJS-400-15, (3.57 wt.% C, 2.51wt.% Si, 0.23 wt.% Mn, Fe = res) | ferrite–perlite matrix graphite nodules with surrounding ferrite areas | Vibratory | 2.73 mm3/h 165 min | 462.2 HV | [62] |
NAB alloy (9.39 wt% Al, 4.73 wt% Ni, 4.53 wt% Fe, 1.07 wt% Mn, 0.11 wt.% Zn, Cu -rest) | copper-rich α matrix phase, β phase, intermetallic κi, κii, κiii and κiv phases | Vibratory 20 kHz, 80 µm | 0.081 mm3/h 1 h | 170 HV | [59] |
NAB alloy (78.8 wt% Cu, 11.58 wt% Al, 3.98 wt% Ni, 5.12 wt% Fe, 0.43 wt% Zn and 0.09 wt% Mn) | copper-rich α matrix phase, martensitic β′ phase, intermetallic κi, κii, κiii and κiv phases | Vibratory 20 kHz, 45 µm | 0.511 mg/h 8 h | 228 HV | [63] |
NAB alloy (9.24 wt% Al, 4.73 wt% Ni, 4.56 wt% Fe, 1.31 wt% Mn, 0.06 wt.% C, Cu -rest) | fcc copper-rich α matrix, martensitic bcc β’ phases (or retain β phases), κ phases | Vibratory | 0.30 mm3/h 10 h | - | [64] |
Cu-Al alloy (10.23 wt% Al, 4.19 wt% Fe, 0.03 wt% Ni, 0.15 wt% Mn, 0.03 wt.% C, Cu rest) | fcc copper-rich α matrix, β phases, κ phases, Fe(Al, Cu) phases | Vibratory | 0.45 mm3/h 10 h | - | [64] |
Ti-48Al-2Mn-2Nb (at.%) | Titanium γ structure | Vibratory | 0.03 mm3/h 20 h | 225 HV | [56] |
Ti-48Al-2Mn-2Nb (at.%) homogenized | Titanium α grains in B2 matrix | Vibratory | 0.05 mm3/h 20 h | 230 HV | [56] |
Ti-52Al (at.%) homogenized | Titanium α grains in B2 matrix | Vibratory | 0.05 mm3/h 20 h | 182 HV | [56] |
Ti-25Al-10Nb-3V-1Mo (at.%) | Titanium α grains in B2 matrix | Vibratory | 0.08 mm3/h 20 h | 420 HV | [56] |
Ti49-Ni51 (wt.%) alloy | Titanium B2 parent phase | Vibratory | 0.4 mg/h 5 h | 280 HV | [53] |
Ti50-Ni50 (wt.%) alloy | Titanium B19′ martensite | Vibratory | 0.42 mg/h 5 h | 214 HV | [53] |
Ti50Ni40Cu10 alloy(wt.%) | Titanium B2′B19′B19′ phase | Vibratory | 0.36 mg/h 5 h | 181 HV | [53] |
2024T351 aluminum alloy (wt%: Cu3.97, Mg1.43, Mn0.625, Si0.5, Al-bal.) | Aluminum phases | Vibratory self-developed device, 20 kHz | 0.16 mg/h 3h | 155 HV | [65] |
AZ31 magnesium alloy (Al 2.5–3.5%, Zn 0.6–1.4%, Si 0–0.3%, Mn 0–0.2%, Mg –balance, wt%) | Magnesium phases | Vibratory | 95 µm/h 6 h | 49 ± 3 HV | [66] |
WC-15Co (wt.%) | Carbides in Co matrix | Vibratory | 0.11 mm3/h 20 h | 1050 HV | [56] |
Al2O3 | Ceramic sintered at 1500 °C | jet-impact device | 0.031 mm3/h, 40 h | 17 GPa (1733 HV) | [67] |
Al2O3/ZrO2 | Ceramic composite sintered at 1550 °C | jet-impact device | 0.0063 mm3/h 40 h | 17 GPa (1733 HV) | [67] |
ZrO2 | Ceramic sintered at 1550 °C | jet-impact device | 0.0425 mm3/h 40 h | 14 GPa (1428 HV) | [67] |
ZrO2/WC | Ceramic composite sintered at 1600 °C | jet-impact device | 0.0325 mm3/h 40 h | 17 GPa (1733 HV) | [67] |
Material /Testing Liquid | Modification | Erosion Rate Time Testing | Hardness | Improvement in Cavitation Erosion Resistance | Reference |
---|---|---|---|---|---|
16MnCr5 steel | Carburizing in gas at 880 °C, 8 h, and annealing at 180 °C, 90 min | 0.16 µm/min 165 min | 500–550 HV | 2.18 times | [85] |
16MnCr5 steel | Carburizing in gas at 880 °C, 8 h, induction hardening using a specific power DP = 0.9 kW cm–2, a frequency of 32 kHz, 4 s, followed by water quenching, and annealing at 180 °C, 90 min | 0.13 µm/min 165 min | 720–780 HV | 2.7 times | [85] |
Cobalt alloy grade Stellite 6 | Nitrogen Ion Implantation 5 × 1016 N+/cm−2 | 0.0018 mg/min 60 min | 2 times | [46] | |
Cobalt alloy grade Stellite 6 | Nitrogen Ion Implantation 1 × 1017 N+/cm−2 | 0.0022 mg/min 60 min | 1.76 times | [46] | |
ASTM A743 grade CA-6NM steel | Plasma nitriding at 500 °C, 2 h, 532 Pa, gas flow: 5×10−6 m3 s−1, mixture: 5% N2 + 95% H2 (in volume) | 0.034 mg/min 7 h | 950 HV | 2.58 times | [86] |
ASTM A743 grade CA-6NM steel | Plasma nitriding at 500 °C, 2 h, 532 Pa, gas flow 5×10−6 m3 s−1, mixture: 10% N2 + 90% H2; (in volume) | 0.028 mg/min 7 h | 1170 HV | 3.14 times | [86] |
ASTM A743 grade CA-6NM steel | Plasma nitriding at 500 °C, 2 h, 532 Pa, gas flow of 5×10−6 m3 s−1, mixture: 20% N2 + 80% H2; (in volume) | 0.004 mg/min 7 h | 1240 HV | 23.72 times | [86] |
Co30Cr19Fe alloy | Solubilizing at 1200 °C and plasma nitriding at 350 °C, 20 h, 150 Pa, gas mixture: 25% N2 + 75% H2; (in volume) | 0.009 mg/min 60 min | 640 HV | 1.15 times | [87] |
Co30Cr19Fe alloy | Solubilizing at 1200 °C and plasma nitriding at 400 °C, 20 h, 150 Pa, gas mixture: 75% N2 + 25% H2; (in volume) | 0.002 mg/min 60 min | 900 HV | 5.4 times | [87] |
Co30Cr19Fe alloy | Recrystallizing at 1100 °C and plasma nitriding at 400 °C, 20 h, 150 Pa, gas mixture: 75% N2 + 25% H2; (in volume) | 0.002 mg/min 60 min | 970 HV | 3.05 times | [87] |
13-4 CA6NM steel | Plasma nitriding at 400 °C, 20 h, gas mixture: 25% N2 + 75% H2. | 0.005 µm/min 22 h | 1059 HV | 3.62 times | [88] |
AISI 1045 steel | Plasma nitriding at 430–450 °C, 2 h | 0.04 µg/min | 4.1 GPa | 3.16 times | [89] |
13-4 CA6NM steel | Salt bath nitrocarburizing | 0.03 µm/min 22 h | 1064 HV | 22.33 times | [88] |
Stellite 250 alloy (dual phased Co–Cr alloy) | Low-temperature plasma carbonitriding at 380 °C, 3 h | 0.002 µm/min 15 h | 938 HV | 1.74 times | [90] |
Stellite 250 alloy (dual phased Co–Cr alloy) | Low-temperature plasma carbonitriding at 380 °C, 9 h | 0.001 µm/min 15 h | 898 HV | 2.79 times | [90] |
Stellite 250 alloy (dual phased Co–Cr alloy) | Low-temperature plasma carbonitriding at 380 °C, 15 h. | 0.006 µm/min 15 h | 997 HV | 0.59 times | [90] |
Titanium (CP-Ti) | Gas nitriding at 700 °C, 16 h | 0.0089 mg/min 8 h | 1023.5 HV | 2.53 times | [91] |
Titanium (CP-Ti) | Gas nitriding at 850 °C, 4 h | 0.0062 mg/min 8 h | 977.4 HV | 3.63 times | [91] |
Titanium (CP-Ti) | Gas nitriding at 850 °C, 8 h | 0.0157 mg/min 8 h | 1083.7 HV | 1.42 times | [91] |
Titanium (CP-Ti) | Gas nitriding at 850 °C, 16 h | 0.0187 mg/min 8 h | 1158.6 HV | 1.2 times | [91] |
Titanium (CP-Ti) | Gas nitriding at 1000 °C, 16 h | 0.0304 mg/min 8 h | 1225.3 HV | 0.74 times | [91] |
Ti6Al4V alloy | Laser gas nitriding using the scanning galvanometer | 0.038 mg/min 13 h | 730 HV | 2.5 times | [92] |
Ti6Al4V alloy | Gas nitriding using the diode laser (laser spot size d = 4 mm) with the robot | 0.05 mg/min 13 h | 1000 HV | 1.89 times | [92] |
ASTM A743 steel (CA6NM) | Boronised using the packing method at 950 °C for 2 h | 0.03 µm/min 15 h | 1950 HV | 2.9 times | [93] |
ASTM A743 steel (CA6NM) | Boronised using the packing method at 950 °C for 6 h | 0.048 µm/min 15 h | 1967 HV | 1.82 times | [93] |
ASTM A743 steel (CA6NM) | Boronised using the packing method at 950 °C for 8 h | 0.049 µm/min 15 h | 1964 HV | 1.77 times | [93] |
Material /Testing Liquid | Modification | Erosion Rate Test Duration | Hardness (Residual Stress) | Improvement in Erosion Resistance | Reference |
---|---|---|---|---|---|
2024T351 Al alloy Cu3.97, Mg1.43, Mn0.625, Si0.5 and Al-bal, wt% water | Ultrasonic shot peening with vibration intensity of 60%, duration of 60 s | 0.0015 mg/min 3 h | 170 HV (−185.3 MPa) | 1.76 times | [65] |
2024T351 Al alloy Cu3.97, Mg1.43, Mn0.625, Si0.5 and Al-bal, wt% water | Ultrasonic shot peening with vibration intensity of 80%, duration of 60 s | 0.0012 mg/min 3 h | 175 HV (−263.6 MPa) | 2.14 times | [65] |
2024T351 Al alloy Cu3.97, Mg1.43, Mn0.625, Si0.5 and Al-bal, wt% water: | Ultrasonic shot peening with vibration intensity of 80%, duration of 120 s | 0.002 mg/min 3 h | 182 HV (−283.5 MPa) | 1.3 times | [65] |
2024T351 Al alloy Cu3.97, Mg1.43, Mn0.625, Si0.5 and Al-bal, wt% water | Ultrasonic shot peening with vibration intensity of 80%, duration of 240 s | 0.0024 mg/min 3 h | 192 HV (−332.1 MPa) | 1.12 times | [65] |
304 steel water | Deep rolling | 0.006 mm3/min 6 h | 325 HV | 2.23 times | [94] |
316 steel water | Deep rolling | 0.0096 mm3/min 6 h | 270 HV | 2.18 times | [94] |
316 steel water | friction stir processing at 388 rpm | 0.00046 mm3/min 20 h | 420 HV | 5.1 times | [95] |
316 steel water | friction stir processing at 1800 rpm | 0.0006 mm3/min 20 h | 350 HV | 3.8 times | [95] |
316 steel 3.5% NaCl | friction stir processing at 388 rpm | 0.0007 mm3/min 19 h | 420 HV | 4.46 times | [95] |
316 steel 3.5% NaCl | friction stir processing at 1800 rpm | 0.001 mm3/min 19 h | 350 HV | 3.38 times | [95] |
nickel-aluminum bronze (NAB) alloy distilled water | Compressive stresses introduced; −60 MPa | 0.009 mg/cm2 min 8 h | −60 MPa | 0.95 times | [63] |
nickel-aluminum bronze alloy distilled water | Compressive stresses introduced; stress level: −120 MPa | 0.0092 mg/cm2 min 8 h | −120 MPa | 0.92 times | [63] |
nickel-aluminum bronze (NAB) alloy 3.5% NaCl | Compressive stresses introduced; stress level: −60 MPa | 0.016 mg/cm2 min 8 h | −60 MPa | 0.8 times | [63] |
nickel-aluminum bronze (NAB) alloy 3.5% NaCl | Compressive stresses introduced; stress level: −120 MPa | 0.022 mg/cm2 min 8 h | −120 MPa | 0.57 times | [63] |
Substrate Material /Testing Liquid | Modification | Erosion Rate | Hardness | Improvement in Erosion Resistance | Reference |
---|---|---|---|---|---|
IRECA alloy/water | 200 W, 20 mm/s, position +20 mm | 0.35 mg/min 9 h | 38–39 HRC | 1.39 times | [96] |
IRECA alloy/water | 210 W, 10 mm/s, position +0 mm | 0.32 mg/min 9 h | 39–42 HRC | 1.49 times | [96] |
IRECA alloy/water | 1 pass: 210 W, 20 mm/s, position +0 mm and 2 pass: 150 W, 5 mm/s, position 0 mm | 0.3 mg/min 9 h | 36–38 HRC | 1.58 times | [96] |
IRECA alloy/water | 300 W, 10 mm/s, position 0 mm | 0.33 mg/min 9 h | 36–37 HRC | 1.45 times | [96] |
IRECA alloy/water | 210 W, 10 mm/s, position 0 mm | 0.42 mg/min 9 h | 41–43 HRC | 1.15 times | [96] |
IRECA alloy/water | 275 W, 10 mm/s, position 0 mm | 0.29 mg/min 9 h | 34–36 HRC | 1.67 times | [96] |
AA6061 aluminum alloy/water | Laser melting | 0.125 mg/min cm2 4 h | 59 HV | 0.99 times | [97] |
AA6061 aluminum alloy/water | Laser surface alloying 100% SiC + 0% Si3N4 | 0.11 mg/min cm2 4 h | 377 HV | 1.13 times | [97] |
AA6061 aluminum alloy/water | Laser surface alloying 95% SiC + 5% Si3N4 | 0.094 mg/min cm2 4 h | 386 HV | 1.32 times | [97] |
AA6061 aluminum alloy/water | Laser surface alloying 80% SiC + 20% Si3N4 | 0.087 mg/min cm2 4 h | 353 HV | 1.43 times | [97] |
AA6061 aluminum alloy/water | Laser surface alloying 50% SiC + 50% Si3N4 | 0.061 mg/min cm2 4 h | 378 HV | 2.04 times | [97] |
AA6061 aluminum alloy/water | Laser surface alloying 0% SiC + 100% Si3N4 | 0.041 mg/min cm2 4 h | 400 HV | 3.02 times | [97] |
17-4PH stainless steel/water | Laser surface alloying Stellite 6 powder (powder size 45~150 μm) | 0.041 mg/min 50 h | 461 HV | 5 times | [54] |
17-4PH stainless steel/water | Laser surface alloying Wrought Stellite 6B powder | 0.03 mg/min 50 h | 430 HV | 7 times | [54] |
17-4PH stainless steel/water | Laser surface alloying low-carbon high-molybdenum C14 powder (powder size 53~180 μm) | 0.017 mg/min 50 h | 487 HV | 12 times | [54] |
304 steel/water | laser shock processing | 0.028 mg/min 6 h | 3 times | [98] | |
AA5083 aluminium alloy/water | laser shock peening with an ablative coating (LSP) | 0.588 mg/min 300 min | 108 HV −175 MPa | 1.45 times | [99] |
AA5083 aluminium alloy/water | laser shock peening without ablative coating (LSPwC) | 0.399 mg/min 300 min | 119 HV −189MPa | 2.13 times | [99] |
AISI 420 stainless/ water | laser shock peening with one coverage layer | 0.011 mg/min 10 h | 310 HV −387 MPa | 1.5 times | [100] |
AISI 420 stainless/ water | laser shock peening with two coverage layers | 0.009 mg/min 10 h | 330 HV −400 MPa | 1.8 times | [100] |
Coating Substrate Material | Modification | Erosion Rate /Time Testing | Coating Hardness /Substrate Hardness | Improvement in Erosion Resistance | Reference |
---|---|---|---|---|---|
Cr1-xNx coating AISI 1045 carbon steel | Plasma-Assisted PVD | 0.0625 mg/min 8 h | 4.05 GPa / 3 GPa | 2 times | [89] |
Cr1-xNx coating AISI 1045 carbon steel | Plasma nitride substrate surface and Plasma-Assisted PVD | 0.0167 mg/min 8 h | 5.76 GPa / 3 GPa | 7.5 times | [89] |
Cr-N coating X39Cr13 steel hardening and annealing at 600 °C | Cathodic arc evaporation method | 0.001 mg/min 10 h | 19.2 GPa / 2.8 GPa | 1.5 times | [105] |
Cr-N coating X39Cr13 steel hardening and annealing at 600 °C | Cathodic arc evaporation method | 0.0067 mg/min 10 h | 21.4 GPa / 2.8 GPa | 2.75 times | [105] |
TiN coating X39Cr13 steel hardening and annealing at 600 °C | Cathodic arc evaporation method | 0.0095 mg/min 10 h | 25.4 GPa / 4,5 GPa | 1.58 times | [105] |
TiN coating X39Cr13 steel hardening and annealing at 400 °C | Cathodic arc evaporation method | 0.0075 mg/min 10 h | 27.4 GPa / 4.5 GPa | 2.4 times | [105] |
TiN coating Ti6Al4V substrate | Commercially produced | 0.067 mg/min 30 min | 2200 HK / 405 HK | 0.2 times | [106] |
AlTiN coating AISI 304 steel | DC magnetron sputtering | - | 35.9 GPa | 11 times | [107] |
TiAlN coating AISI 304 steel | DC magnetron sputtering | - | 32.6 GPa | 6.6 times | [107] |
NiCrAlTi coating 304 L steel | Direct current magnetron sputtering (DCMS) | 0.00005 mm3/min 10 h | 713 HV / 217 HV | 49 times | [108] |
NiCrAlTi-1N coating 304 L steel | Direct current magnetron sputtering (DCMS) gas mixtures with Ar flux of 8 sccm and N2 flux of 1 sccm | 0.0001 mm3/min 10 h | 641 HV / 217 HV | 25 times | [108] |
NiCrAlTi-3N coating 304 L stainless steel | Direct current magnetron sputtering (DCMS) gas mixtures with Ar flux of 8 sccm and N2 flux of 3 sccm | 0.0002 mm3/min 10 h | 770 HV / 217 HV | 11 times | [108] |
NiCrAlTi-5N coating 304 L stainless steel | Direct current magnetron sputtering (DCMS) gas mixtures with Ar flux of 8 sccm and N2 flux of 5 sccm | 0.0007 mm3/min 10 h | 677 HV / 217 HV | 3.3 times | [108] |
NiCrAlTi-8N coating 304 L stainless steel | Direct current magnetron sputtering (DCMS) gas mixtures with Ar flux of 8 sccm and N2 flux of 8 sccm | 0.0014 mm3/min 10 h | 568 HV / 217 HV | 1.8 times | [108] |
NiTi/TiCN, coating Thickness ratio 2:1 X38CrMoV51 steel | Magnetron sputtering | 0.009 mg/min 12 h | 7 GPa / 3 GPa | 1.5 times | [109] |
NiTi/TiCN, coating Thickness ratio 1:1 X38CrMoV51 steel | Magnetron sputtering | 0.007 mg/min 12 h | 7.2 GPa / 3 GPa | 1.9 times | [109] |
NiTi/TiCN, coating Thickness ratio 1:2 X38CrMoV51 steel | Magnetron sputtering | 0.005 mg/min 12 h | 7.36 GPa / 3 GPa | 2.8 times | [109] |
CrAlYN/CrN Thickness ratio 1:1 Ti6AlV substrate | High Power Impulse Magnetron Sputtering (HIPIMS) with high ion bombarding energy | 0.0099 mg/min 4,5 h | 3000 HK / 405 HK | 1.3 times | [106] |
CrAlYN/CrN Thickness ratio 1:1 Ti6AlV substrate | High Power Impulse Magnetron Sputtering (HIPIMS) with low ion bombarding energy | 0.0008 mg/min 4.5 h | 2700 HK / 405 HK | 15.5 times | [106] |
Coating Substrate Material | Erosion Rate /Time Testing | Porosity | Coating Hardness /Substrate Hardness | Improvement in Erosion Resistance | Reference |
---|---|---|---|---|---|
(Fe3Al)30Ti35BN35 AISI 444 steel | 0.073 mg/min 500 min | 3.9% | 12.5 GPa 2.9 GPa | 4.5 times | [121] |
(Fe3Al)30Ti35BN35 AISI 444 steel heat-treated at 1000 °C | 0.054 mg/min 500 min | 4% | 10.6 GPa 2.9 GPa | 6.1 times | [121] |
(Fe3Al)30Ti35BN35 AISI 444 steel heat-treated at 1400 °C | 0.099 mg/min 500 min | 6.5% | 9 GPa 2.9 GPa | 3.3 times | [121] |
WC–CoCr AISI 444 steel | 0.056 mg/min 500 min | 1.3% | 14.5 GPa 2.9 GPa | 5.8 times | [121] |
Cr3C2–NiCr AISI 444 steel | 0.051 mg/min 500 min | 1.9% | 11.4 GPa 2.9 GPa | 6.5 times | [121] |
WC-NiCr coating Monel K-500 | 0.0004 mm3/min 10 h | 4.2% | 1406 HV 395 HV | 2.5 times | [120] |
WC-18Hastelloy C Monel K-500 | 0.0009 mm3/min 10 h | 3.4% | 1261 HV 395 HV | 1.1 times | [120] |
Fe-based coating 321 steel | 0.012821 mg/min 27 h | 3.33% | 920 HV 260 HV | 2.90 times | [122] |
Fe-based coating 321 steel | 0.010684 mg/min 27 h | 2.86% | 890 HV 260 HV | 3.47 times | [122] |
Fe-based coating 321 steel | 0.008961 mg/min 27 h | 5.21% | 950 HV 260 HV | 4.14 times | [122] |
Fe-based coating 321 steel | 0.017921 mg/min 27 h | 1.0% | 680 HV 260 HV | 2.07 times | [122] |
Fe-based coating 321 steel | 0.01634 mg/min 27 h | 4.1% | 908 HV 260 HV | 2.27 times | [122] |
Fe-based coating 321 steel | 0.006173 mg/min 27 h | 0.77% | 1099 HV 260 HV | 6.01 times | [122] |
Fe-based coating 321 steel | 0.017007 mg/min 27 h | 5.64% | 610 HV 260 HV | 2.18 times | [122] |
Fe-based coating 321 steel | 0.006536 mg/min 27 h | 2.78% | 987 HV 260 HV | 5.68 times | [122] |
Fe-based coating 321 steel | 0.00641 mg/min 27 h | 4.35% | 1073 HV 260 HV | 5.79 times | [122] |
WC-Co-Cr AZ31 magnesium alloy | 0.145 mg/min 6 h | 2.7% | 15.12 GPa | 3.7 times | [66] |
WC-Co AZ31 magnesium alloy | 0.405 mg/min 6 h | 2.3% | 16.84 GPa | 1.32 times | [66] |
WC-Cr3C2-Ni AZ31 magnesium alloy | 0.248 mg/min 6h | 1.7% | 13.15 GPa | 2.15 times | [66] |
WC-12Co coating 304 steel | 0.0072 mm3/min 16 h | 0.63% | 1541 HV 150 HV | 3.23 times | [116] |
WC-12Co coating 304 steel | 0.0134 mm3/min 16 h | 1.18% | 1523 150 HV | 1.73 times | [116] |
WC-12Co coating 304 steel | 0.019 mm3/min 16 h | 1.76% | 1034 150 HV | 1.22 times | [116] |
WC-10Co4Cr coating 304 steel | 0.00199 mm3/min 12 h | 0.31% | 1126 150 HV | 5.06 times | [123] |
WC-10Co4Cr coating 304 steel | 0.00305 mm3/min 12 h | 0.47% | 1186 150 HV | 3.29 times | [123] |
WC-10Co4Cr coating 304 steel | 0.00278 mm3/min 12 h | 0 26% | 1241 150 HV | 3.62 times | [123] |
WC-12Co GF AISI 1008 steel | 0.0466 mm3/min 128 min | 3.32% | 860 HV 100 HV | [124] | |
WC-12Co GF AISI 1008 steel | 0.0212 mm3/min 128 min | 1.3% | 1069 HV 100 HV | [124] | |
WC-12Co GF AISI 1008 steel | 0.257 mm3/min 128 min | 3.15% | 890 HV 100 HV | [124] | |
WC-12Co GF AISI 1008 steel | 0.0124 mm3/min 128 min | 0.47% | 989 HV 100 HV | [124] | |
CuAl9Ni5-Fe4Mn (NAB) VL-A steel (S235JR | 0.029 mm/min 120 min | 0.85% | 400 HV | 0.23 times | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krella, A.K. Degradation and Protection of Materials from Cavitation Erosion: A Review. Materials 2023, 16, 2058. https://doi.org/10.3390/ma16052058
Krella AK. Degradation and Protection of Materials from Cavitation Erosion: A Review. Materials. 2023; 16(5):2058. https://doi.org/10.3390/ma16052058
Chicago/Turabian StyleKrella, Alicja Krystyna. 2023. "Degradation and Protection of Materials from Cavitation Erosion: A Review" Materials 16, no. 5: 2058. https://doi.org/10.3390/ma16052058
APA StyleKrella, A. K. (2023). Degradation and Protection of Materials from Cavitation Erosion: A Review. Materials, 16(5), 2058. https://doi.org/10.3390/ma16052058