
metals

Review

Cavitation Peening: A Review

Hitoshi Soyama

Department of Finemechanics, Tohoku University, Sendai 980-8579, Japan; soyama@mm.mech.tohoku.ac.jp;
Tel.: +81-22-795-6891; Fax: +81-22-795-3758

Received: 3 January 2020; Accepted: 14 February 2020; Published: 19 February 2020
����������
�������

Abstract: The most popular surface modification technology used to enhance the mechanical
properties of metallic materials is shot peening. Shot peening improves fatigue life and strength by
introducing local plastic deformation pits. However, the pits increase surface roughness, which is a
disadvantage for fatigue properties. Recently, cavitation peening, in which cavitation bubble collapse
impacts are used, has been developed as an advanced surface modification technology. The advantage
of cavitation peening is the lesser increase in surface roughness compared with shot peening, as
no solid collisions occur in cavitation peening. In conventional cavitation peening, cavitation is
generated by injecting a high-speed water jet into water. However, cavitation peening is different from
water jet peening, in which water column impacts are used. In the present review, to avoid confusing
cavitation peening and water jet peening, fundamentals and mechanisms of cavitation peening are
described in comparison to water jet peening, and the effects and applications of cavitation peening
are reviewed compared with the other peening methods.
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1. Introduction

As cavitation causes severe damage to hydraulic machinery such as pumps [1,2], cavitation
is harmful to hydraulic components. Impact at cavitation bubble collapse can be used to enhance
material properties, similar to shot peening. A peening method using cavitation impact is called
“cavitation peening” [3] or “cavitation shotless peening” [4], as shots are not required in cavitation
peening. The merit of cavitation peening is that the increase in surface roughness is less than that of
conventional shot peening, as no solid collisions occur. In the case of cavitation peening, the impacts at
bubble collapses are used; thus, understanding the mechanism of cavitation is important to enhance
material properties without erosion.

Although cavitation impacts cause erosion in hydraulic components, cavitation peening can treat
metallic materials without causing erosion, as cavitation peening finishes the treatment within the
incubation period. The cavitation erosion, i.e., mass loss induced by cavitation, changes with exposure
time to cavitation, and is classified into four stages: incubation stage, acceleration, maximum rate, and
deceleration [5–7]. In the incubation stage, the cavitation impacts that affect the materials produce
plastic deformation without mass loss. Note that the threshold level of each material can be obtained
experimentally [8]. After the incubation period, the mass loss starts due to a fatigue fracture process,
and the mass loss rate increases with time; thus, it is called the acceleration stage. As the optimum
processing time of cavitation peening is about 1/25 to 1/5 of incubation period, no mass loss occurs
on the treated surface [9]. After the acceleration stage, the mass loss rate reaches a maximum in the
maximum rate stage, which then decreases in the deceleration stage.

At the beginning, cavitation peening was developed to mitigate stress corrosion cracking in
nuclear power plants by reducing the tensile residual stress of subsurface of stainless steel [10]; it
was successfully applied in the plants [11]. After the aggressive intensity of cavitation peening was
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enhanced by optimizing conditions [4,12], the fatigue strength of mechanical components such as gears
improved [13–15]. In the present review, the aggressive intensity of cavitation peening is discussed in
terms of the cavitation peening results, such as improvement in fatigue strength, work hardening, and
introduction of compressive residual stress. Recently, cavitation peening with abrasive particles was
proposed to enhance the fatigue properties of additive manufactured titanium alloy by smoothing the
surface roughness by introducing compressive residual stress into the subsurface [16]. The history of
cavitation peening is described in Section 2.

In commonly used cavitation peening, cavitation is generated by injecting a high-speed water jet
into a water-filled chamber. Although the water jet is used for cavitation peening, the mechanism of
cavitation peening is different from that of water jet peening, in which shots accelerated by a water
jet or water column impacts at the jet center are used [17–20]. Note that impact at cavitation bubble
collapse is used in cavitation peening as mentioned above. The difference between cavitation peening
and water jet peening is described in Section 6, and the classification map between cavitation peening
region and water jet peening region is introduced in that section.

In this review, to efficiently expand applications of cavitation peening with reliability and
safety, the fundamentals and applications of cavitation peening are described compared with other
peening techniques.

2. History of Cavitation Peening

To mitigate the stress corrosion cracking of pressure vessels in nuclear power plants, mechanical
surface treatments to reduce tensile residual stress in the subsurface in the submerged condition were
investigated. At that time, peening methods using a submerged water jet [17] and a submerged pulse
laser [21] were proposed. Both methods were successfully applied to nuclear power plants [11,22].

When a high-speed water jet is injected into water through a nozzle or an orifice, cavitation
bubbles are generated inside or at the exit of the throat. The submerged water jet with cavitation
bubbles is called a cavitating jet. Impulse pressure caused by a submerged high-speed water has two
peaks that change with distance from nozzle [23]. When the residual stress on the impinging surface
of stainless steel exposed to the cavitating jet was measured changing the standoff distance from the
nozzle to the impinging surface, the compressive residual stress showed two peaks as a function of
the standoff distance [10]. The peak at the near side of the nozzle was generated by impinging water
columns in the jet center, i.e., water jet peening. The peak on the far side of the nozzle was caused by
impacts of cavitation bubble collapses, i.e., cavitation peening.

Cutting and testing of materials using a simple cavitating nozzle was proposed [24], and material
properties in a cavitation tunnel were improved by cavitation impact [25]. The residual stress on the
surface of metal powders was changed by ultrasonic cavitation [26]. However, the treatment area
using cavitation impacts is limited when cavitation is produced by cavitation tunnel and/or ultrasonic
cavitation. Cavitating jets are suitable for controlling the treatment area and for aggressive intensity
cavitation peening.

During the initial stage of cavitation peening development, cavitation is generated by injecting a
high-speed water jet into water as mentioned above. In the case of a submerged jet, i.e., a cavitating jet
in water, treating outer surfaces of tanks and/or pipelines is difficult. Soyama realized “a cavitating
jet in air” by injecting a high-speed water jet into a low speed water jet, which was injected into air
without a water-filled chamber, and demonstrated the introduction of compressive residual stress
into a metallic surface and the resulting improvement of fatigue strength of stainless steel [27,28] and
nitrocarburized steel [29]. The cavitating jet in air research has been followed by Marcon et al. [30,31].
The differences produced by the introduced distribution of compressive residuals stress between a
cavitating jet in water and a cavitating jet in air is summarized in Section 4.1.

The main purpose of cavitation peening during the initial stage of development was mitigation
of stress corrosion cracking in stainless steel, as mentioned above. In the second stage, cavitation
peening was applied to enhance the fatigue properties of metallic materials such as silicon manganese
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steel [32], aluminum alloy [4,33,34], carbonized chrome molybdenum alloy steel [12], and carbon
steel [35] by improving the aggressive intensity of cavitation peening. In this review, the aggressive
intensity of the cavitating jet is the ability of the cavitating jet to introduce compressive residual stress,
arc height of treated plate, and the erosion rate. To enhance the aggressive intensity of the cavitating jet,
a pressurized chamber was used to optimize the cavitating condition considering cavitation number
(see Section 4.5). The fatigue strength of actual mechanical components, such as gears [14,36,37] and
continuous valuable transmission (CVT) elements [13], was improved. Cavitation peening using a
pressurized chamber improves valuable equipment, such as biomedical implants [38].

During the third stage of cavitation peening, to enhance aggressive intensity of the cavitating
jet, the nozzle was optimized considering the outlet geometry of the nozzle throat [39]. The outlet
bore of the nozzle throat was optimized [40], thereby enhancing the aggressive intensity of the jet by
about 20 times. Then, a cavitator was proposed to supply cavitation nuclei into the cavitating jet [41]
considering effect of the cavitator on severe cavitation erosion in a centrifugal pump [42]. As the
vortices are also important, a guide pipe was placed at the downstream of the nozzle and optimized [41].
The cavitator and guide pipe enhanced each enhanced the aggressive intensity two-fold. Thus, the
aggressive intensity of the jet was enhanced by 20 × 2 × 2 = 80 times compared with the first stage of
cavitation peening development, as shown in Figure 1. Recently, water flow holes near the nozzle
outlet were proposed, and the optimized holes enhanced aggressive intensity by about 34% compared
to without holes [43]. The details of effect of nozzle geometry is described in Section 4.3.

During the fourth stage of cavitation peening development, abrasive cavitation peening was
proposed [16]. Additive manufactured (AM) metals are attractive materials as the components
are directly manufactured from computer-aided design (CAD) data, along with other advantages.
However, the limitations of AM metals are the fatigue life and strength due to the rough surface
resulting from unmelted metallic particles. Although cavitation peening can improve the fatigue
strength of AM metals drastically [44,45], the surface roughness is barely changed. Then, to create a
smooth surface by abrasive collision, abrasion was added to the cavitating jet, improving the fatigue
strength of titanium alloy manufactured by electron beam melting (EBM) [16]. The polishing inside of
holes made by additive manufacturing was also proposed using abrasion and cavitation [46].

Metals 2019, 9, x FOR PEER REVIEW 3 of 27 

 

arc height of treated plate, and the erosion rate. To enhance the aggressive intensity of the cavitating 
jet, a pressurized chamber was used to optimize the cavitating condition considering cavitation 
number (see Section 4.5). The fatigue strength of actual mechanical components, such as gears 
[14,36,37] and continuous valuable transmission (CVT) elements [13], was improved. Cavitation 
peening using a pressurized chamber improves valuable equipment, such as biomedical implants 
[38]. 

During the third stage of cavitation peening, to enhance aggressive intensity of the cavitating jet, 
the nozzle was optimized considering the outlet geometry of the nozzle throat [39]. The outlet bore 
of the nozzle throat was optimized [40], thereby enhancing the aggressive intensity of the jet by about 
20 times. Then, a cavitator was proposed to supply cavitation nuclei into the cavitating jet [41] 
considering effect of the cavitator on severe cavitation erosion in a centrifugal pump [42]. As the 
vortices are also important, a guide pipe was placed at the downstream of the nozzle and optimized 
[41]. The cavitator and guide pipe enhanced each enhanced the aggressive intensity two-fold. Thus, 
the aggressive intensity of the jet was enhanced by 20 × 2 × 2 = 80 times compared with the first stage 
of cavitation peening development, as shown in Figure 1. Recently, water flow holes near the nozzle 
outlet were proposed, and the optimized holes enhanced aggressive intensity by about 34% 
compared to without holes [43]. The details of effect of nozzle geometry is described in Section 4.3. 

During the fourth stage of cavitation peening development, abrasive cavitation peening was 
proposed [16]. Additive manufactured (AM) metals are attractive materials as the components are 
directly manufactured from computer-aided design (CAD) data, along with other advantages. 
However, the limitations of AM metals are the fatigue life and strength due to the rough surface 
resulting from unmelted metallic particles. Although cavitation peening can improve the fatigue 
strength of AM metals drastically [44,45], the surface roughness is barely changed. Then, to create a 
smooth surface by abrasive collision, abrasion was added to the cavitating jet, improving the fatigue 
strength of titanium alloy manufactured by electron beam melting (EBM) [16]. The polishing inside 
of holes made by additive manufacturing was also proposed using abrasion and cavitation [46]. 

 

Figure 1. Development of relative aggressive intensity of cavitating jet, changing over time. 

3. Cavitation 

3.1. What Is Cavitation? 

Cavitation is a phase change phenomenon from liquid to gas by decreasing pressure due to 
increase in velocity [2]. As shown in the Bernoulli equation (Equation (1)), when velocity v increases, 
pressure p decreases. Thus, when pressure reaches the vapor pressure of liquid pv, the liquid becomes 
vapor, i.e., gas phase: 

Figure 1. Development of relative aggressive intensity of cavitating jet, changing over time.



Metals 2020, 10, 270 4 of 27

3. Cavitation

3.1. What Is Cavitation?

Cavitation is a phase change phenomenon from liquid to gas by decreasing pressure due to
increase in velocity [2]. As shown in the Bernoulli equation (Equation (1)), when velocity v increases,
pressure p decreases. Thus, when pressure reaches the vapor pressure of liquid pv, the liquid becomes
vapor, i.e., gas phase:

1
2
ρL v2 + p = const (1)

where ρL is the density of the liquid.
The most important parameter of cavitating flow is cavitation number σ [2], which is defined

by Equation (2). σ is a ratio of dynamic pressure defined by the velocity and the static pressure
considering pv:

σ =
p− pv
1
2ρLv2

=
p2 − pv

p1 − p2
≈

p2

p1
(2)

where p1 and p2 are the upstream and downstream pressure of the orifice or nozzle, respectively, and
are absolute pressures. In the case of a cavitating jet, σ can be simplified using Equation (2) because
p1 >> p2 >> pv.

Figure 2 illustrates typical aspect of cavitation. In Figure 2, the water flows from the left- to the
right-hand side through a Venturi tube [47]. In the narrow region where the pressure decreases due to
the increase in flow velocity, water becomes cavitation bubbles, which are shown as white bubbles.
In the expanded region where the pressure increases due to the decrease in flow velocity, cavitation
collapses. This means that the gas phase becomes the liquid phase. As shown in Figure 2, in the
cavitation collapsing region, the string-like cavitation bubbles are observed. In previous studies [1,2],
cavitation caused severe erosion through vortex cavitation, as shown in Figure 3 [48]. This vortex
cavitation consists of small tiny bubbles. Numerical simulation showed that cloud cavitation, consisting
of small tiny bubbles, generates larger shockwaves comparing with a single bubble [49]. Thus, from
the cavitation peening viewpoint, the generation of vortex cavitation consisting of tiny bubbles is
important for enhancing peening intensity.
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Impact at cavitation bubble collapse can be generated by two methods [2]. This first is a microjet,
which was observed numerically [50] and experimentally [51,52]. The far side of the bubble from the
solid surface deforms, and the vapor–liquid interfaces becomes a microjet. Then, the jet hits the surface.
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Note that a microjet in vortex cavitation was also observed experimentally [53]. The other method is
the shockwave method, created after cavitation shrinking then rebounding due to gas pressure inside
the bubble. At the rebound, i.e., expansion, a shockwave is generated. Figure 4 reveals the collapse of
a bubble that was induced by a pulse laser using photo elasticity [54]; the behavior of a bubble induced
by a pulse laser is similar to that of a cavitation bubble [52,55]. In Figure 4, the upper part is water and
lower part is acrylic resin with polarization plates. The aspect was observed by a high-speed video
camera. The shrunken bubble is shown in black shadow, as the light source was placed on the other
side of the camera. At time (t) = 0 µs, the bubble size was the smallest and increased at t > 0 µs due to
the rebound of the bubble. At t > 0 µs, the pressure wave was visualized in a black and white pattern
due to photo elasticity. This result shows that the impact was produced at t = 0 µs, and the pressure
wave was propagated in the target material.
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3.2. How To Generate Cavitation

3.2.1. Hydraulic Cavitation

The most common method used to generate cavitation for cavitation peening is hydraulic
cavitation. This means that cavitation is created using a hydrodynamic phenomenon in a narrow flow
passage such as a Venturi tube, orifice, and/or nozzle. As shown in Figure 2, cavitation is generated in
the narrow region of a Venturi tube, and cavitation can be taken out from the tube by cutting the tube, as
shown in Figure 5a [54]. The step type nozzle also creates cavitation inside the nozzle and near nozzle
exit, as shown in Figure 5b [54]. Figure 6 shows a schematic diagram of a cavitating jet, a cavitating jet
observed with a flush lamp, and the jet observed with a normal light source. To reveal the unsteady
periodical aspect of the impinging cavitating jet, Figure 7 shows the impinging jet observed using a
high-speed video camera. High-speed observation of a free cavitating jet and a impinging cavitating
jet using a high-speed video camera was reported [56], and more details of the impinging jet were
provided [57]. The condition of the cavitation jet in Figure 6b,c and Figure 7 was as follows; the
injection pressure p1 was 30 MPa, the downstream of the nozzle was at atmospheric pressure, i.e.,
0.1 MPa, the nozzle diameter d was 2 mm, and the standoff distance from the upstream corner of the
nozzle to the target was 262 mm. When a high-speed water jet is injected into water, cavitation is
generated in the vortex core in the shear layer around the jet, where the pressure is lower, as shown in
Figure 5b [58,59]. The vortex cavitations combine with each other, creating a big cloud of cavitation,
which consists of tiny bubbles, as shown in Figures 6b and 7. When the cloud cavitation reaches the
impinging surface, the cloud cavitation becomes a ring vortex cavitation, then part of ring cavitation
collapses, producing an impact in a ring region on the target surface. This is why the typical treatment
is performed by a fixed cavitating jet, as shown in Figure 8 [3]. In Figure 8, an aluminum specimen is
used to clearly show a peening area. Note that when a free and/or impinging cavitating jet is observed
using a normal continuous light source with a normal camera, it is very difficult to see the structure of
the cavitating jet, as the jet was observed in Figure 6c. Cloud cavitation and/or ring vortex cavitation
cannot be observed by such conventional observation. A figure in certain studies [60–62] showed that
the vortex cavitation in the shear layer directly produces a ring region, but this is incorrect. Actually,
the cloud cavitation behavior is important for optimizing cavitation peening, as larger cloud cavitation
has a larger impact, which is used for cavitation peening [41], and the size of cloud cavitation is closely
related to the frequency of the cloud shedding [41]. The similarity law of the shedding frequency was
previously reported [63].
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distance s = 262 mm, exposure time t = 1 min) [3].

As mentioned above, a submerged high-speed water jet with cavitation, i.e., a cavitating jet in
water, is used for conventional cavitation peening. The target should be placed in a water-filled
chamber. Thus, treating the outside surface of tanks and pipelines, which are required to be treated by
cavitation peening, is difficult. Then, Soyama realized a cavitating jet in air by injecting a high-speed
water jet into a low-speed water jet, which was injected into air without a water-filled chamber, and
demonstrated the introduction of compressive residual stress into metallic materials [27,64,65]. Typical
aspects of a cavitating jet in water and in air are shown in Figure 9 [54]. As the periodical shedding
of the cloud cavitation of the cavitating jet synchronizes with the velocity of the low-speed water jet
under optimum conditions [64], the surface of the low-speed water jet shows a drastic wavy pattern,
as shown in Figure 9. The improvement in the fatigue strength of stainless steel by the cavitating jet in
air was also demonstrated compared with that of a cavitating jet in water [28].

To treat a large area, a nozzle consisting of multiple orifices was proposed, and the improvement
in fatigue strength of stainless steel was reported [66]. To treat both sides at one time, cavitation
peening using opposed cavitating jets was proposed and the fatigue strength of a duralumin plate
with a hole was improved [67].
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3.2.2. Ultrasonic Cavitation

Cavitation erosion resistance of materials was evaluated using a vibratory test, in which cavitation
is generated by ultrasonic vibration [6]. Note that a material test using hydraulic cavitation was
standardized by ASTM International [7]. Cavitation induced by ultrasonic vibration is called ultrasonic
cavitation. One of major topic related to ultrasonic cavitation is sonochemistry, in which chemical
reactions are accelerated by ultrasonic cavitation [68]. Even hydraulic cavitation can be used for
chemical processes, and the efficiency of pretreatment of biomass using hydraulic cavitation was found
to be 20 times better than that of ultrasonic cavitation [69].

Figure 10 shows typical aspect of ultrasonic cavitation [70]; cavitation was observed at the tip of a
vibratory horn. In Figure 10, the aspect of cavitation was observed by an instantaneous photography
using a flush lamp. As the aspect of cavitation induced by ultrasonic vibration changed with time,
the flush lump was synchronized with the vibration. In Figure 10, the white bubbles are cavitation.
At bubble collapse, a shockwave was induced and propagated, then the black circle region, i.e., shock
ring, shows where a shockwave was propagated with collapsing the bubble. Compressive residual
stress was introduced into stainless steel powders by ultrasonic cavitation [26], and a machining
process used created using ultrasonic cavitation [71]. Compressive residual stress was also introduced
into metallic materials [72,73]. As shown in Figure 10, cavitation occurs on the tip of the vibratory
horn. The effect of horn-tip geometry on ultrasonic cavitation peening was investigated [74]. During
ultrasonic cavitation peening, the vibratory horn is placed to the target surface at a certain distance
from the target. The aggressive intensity of ultrasonic cavitation drastically changes with the distance
from the target [70], which was confirmed both experimentally and theoretically [75]. Unfortunately,
the sensitivity of aggressive intensity to the distance using ultrasonic cavitation limits the practical
applications. Internal surface finishing was proposed using ultrasonic and abrasive cavitation [76], and
the internal surface finishing research has shifted to hydrodynamic abrasive cavitation [77]. Ultrasonic
cavitation peening was also used to improve micro-burr-free surfaces [78].
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3.2.3. Laser Cavitation

The other typical method used to create cavitation bubbles is a pulse laser [52]. With laser peening,
the target can be treated in two ways: a pulse laser is exposed to the target with a water film [79–84],
or the pulse laser irradiates the target placed in water [3,85–87], which is called submerged laser
peening. For both laser peening methods, the shockwave induced by laser ablation causes plastic
deformation on the material due to containment by the inertia of water. With submerged laser peening,
a bubble is generated after laser ablation in the same way to create laser cavitation, as mentioned
above. The amplitude of the pressure wave caused by the laser ablation was found to be larger than
that of laser cavitation when the shockwave in water was measured using a submerged shockwave
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sensor [88]. However, the impact induced by the collapse of laser cavitation is larger than that of laser
ablation [3,86] when the impact force passing through in the target is measured by a polyvinylidene
fluoride (PVDF) sensor, which was developed to detect cavitation impact energy [89,90]. Figure 11
shows typical laser ablation (LA) and laser cavitation (LC) with the output signal from a PVDF sensor
and a submerged shockwave sensor. The details are provided in [3,86]. LA and LC were observed
using a high-speed video camera. The used pulse laser was a Q-switched Nd:YAG laser with 1064 nm
wavelength, a maximum energy of 0.35 J, and a pulse width of 6 ns. The handmade PVDF sensor
was installed in the target and the submerged shockwave sensor was placed in water near the target.
As mentioned above, the amplitude of the signal from the PVDF sensor at LC collapse was larger
than that of LA. The amplitude of the signal from the submerged shockwave sensor with LA was
larger than that of LC. Thus, when the focus point of the pulse laser was set in the water, LC can peen
the surface without LA [91]. As shown in Figure 11b, the impact induced by secondary collapse was
detected at t = 1.54 ms by the PVDF sensor, although the secondary collapse could not be observed by
the submerged shockwave sensor (Figure 11c). This is one of reasons why the measurement using the
PVDF sensor is reasonable. When the pressure was measured by a hydrophone, the amplitudes of LA
and LC were nearly equivalent [92].
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4. Key Parameters of Cavitation Peening

4.1. Type of Cavitating Jet

With the conventional method to create cavitation, a submerged high-speed water jet with
cavitation, i.e., a cavitating jet in water, is used. As mentioned above, to treat the outside surface of
tanks, pipelines, and other components, a cavitating jet in air was constructed [27,64] and the fatigue
strength was improved using the cavitating jet in air [28]. A cavitating jet in air is used for the treatment
of a skin pass mill work roll [93]. To treat valuable components, such as biomedical implants and/or
dies, a cavitating jet in water with a pressurized chamber is used [38,94]. To clearly differentiate the
type of cavitating jet on the peening effect, Figure 12 depicts introduced compressive residual stress
into stainless steel SUS316L by cavitation peening (CP) using a cavitating jet in water, a cavitating jet in
air, and a cavitating jet in a water-pressurized chamber [3]. The surface compressive residual stress
introduced by a cavitating jet in air was shown to be larger than that of a cavitating jet in water [3,95].
Note that a cavitating jet in water introduces compressive residual stress in a deeper region than a
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cavitating jet in air [3,95]. The compressive residual stress introduced using a cavitating jet in water
with a pressurized chamber is larger and deeper compared with the others, as shown in Figure 12 [3].
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4.2. Standoff Distance

One of most important parameters of cavitation peening is standoff distance, which is defined as
the distance from the nozzle to the target [96]. The standoff distance is precisely defined by the distance
from the upstream corner of the nozzle to the target, as the flow separates at the corner. Figure 13
shows the relationship between the standoff distance and the curvature 1/ρ, which is calculated from
the arc height and chord length of the peened specimen, as shown in the Appendix A, at the injection
pressures p1 of 40 and 60 MPa [97]. For shot peening, an Almen strip, whose width is 19 mm, is treated,
and the arc height with a chord length of 40 mm is measured, then the arc height is used to evaluate
peening intensity. As shown in the Appendix A, the arc height changes with the chord length; however,
the curvature is not affected by the chord length. Thus, the curvature 1/ρ is used in the present review.
The 1/ρ has two peaks, i.e., the first peak on the near side of nozzle and a second peak on the far
side. The first peak is caused by water jet peening and the second by cavitation peening. As shown
in Figure 6a, as the cavitation develops and then collapses on the target, a certain distance from the
nozzle is required. When the target is set too close to the nozzle, the target is impinged by water
columns in the jet center, i.e., water jet peening. As shown in Figure 13, the 1/ρ of the second peak at
p1 = 40 MPa is larger than that of the first peak of p1 = 60 MPa. The peening intensity of optimized
cavitation peening is larger than that of water jet peening. The details of the differences between water
jet peening and cavitation peening are explained in Section 6. Lichtarowicz identified the relationship
between the optimum standoff distance sopt, where the aggressive intensity of a cavitating jet has a
peak and cavitation number σ, as expressed in Equation (3) [98]:

sopt

d
∝ σ−n (3)

where d is the nozzle throat diameter and n is a constant. Note that n depends on the nozzle
geometry [39]. The optimum standoff distance of similar nozzle geometry can be estimated using
Equation (3) at various injection pressures.
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4.3. Nozzle Geometry and Diameter

The aggressive intensity of a cavitating jet through a conventional water jet nozzle is very low,
although water jets are used for generating cavitation. Figure 14 illustrates a schematic diagram of
the relative aggressive intensity of jets from data published in previous reports [39,41]. In Figure 14,
nozzles A–E are conventional nozzles for a water jet. Nozzle F is a standard nozzle for material testing
using a cavitating jet [7]. As shown in Figures 5 and 6, the vorticial flow near nozzle is very important
for generating a powerful cavitating jet. Nozzle G is an optimized nozzle with vorticial flow in the
outlet geometry at the nozzle exit [40]. As cavitation is initiated from cavitation nuclei, a cavitator
that generates the nuclei was set upstream of the main nozzle (nozzle H); the aggressive intensity
was nearly two times larger than without the cavitator (nozzle G) [41]. When the guide pipe, which
enhances the vorticial flow and the cloud cavitation, was placed downstream of the nozzle (nozzle I),
the aggressive intensity was nearly two times that of nozzle G. When both the cavitator and the guide
pipe were used, the aggressive intensity was nearly four times larger than that of nozzle G. The effect
of nozzle geometry was also previously discussed [99]. To enhance the flow rate of the cavitating jet at
a constant water jet flow rate, water flow holes near the nozzle outlet were used [43]. Note that the
nozzle geometries of nozzles F–J are simple and the erosion in the nozzle is minimal compared with
the horn-type nozzle.
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The other important parameter related to the nozzle is nozzle size, i.e., diameter of the nozzle
throat. To demonstrate the peening effect of nozzle size, Figure 15 shows residual stress as a function
of the depth from the surface with changing nozzle diameter from 0.35 to 2 mm at p1 = 30 MPa and
p2 = 0.1 MPa [100]. The tested material was stainless steel SUS316L. As shown in Figure 15, a larger
nozzle can introduce larger compressive residual stress into a deeper region of the stainless steel. The
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effect of nozzle diameter was also investigated from 0.4 to 0.6 mm at p1 = 16.5 and 16.7 MPa [99].
The scale effect of nozzle size on the aggressive intensity of a cavitating jet was experimentally evaluated,
and the power law was reported: the exponent depends on cavitation number [101]. The exponent is
1.56 ± 0.03 at σ = 0.01, 1.97 ± 0.03 at σ = 0.014, and 2.49 ± 0.02 at σ = 0.02 [101].
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4.4. Injection Pressure

To reveal the effect of injection pressure at a constant downstream pressure on the introduction of
compressive residual stress, Figure 16 shows the residual stress as a function of the depth from the
surface. Note that the cavitation number changes with the injection pressure at a constant downstream
pressure, as shown in Equation (2). The tested material was the same stainless steel as in Figure 15. The
diameter of the nozzle was 0.35 mm and p2 was 0.1 MPa. The effect of cavitation number is explained
in the next section. As shown in Figure 16, the compressive residual stress and the depth of the
compressive layer barely increased with injection pressure. Comparing the residual stress distribution
of d = 2 mm at p1 = 30 MPa in Figure 15 with that of d = 0.35 mm at p1 = 300 MPa in Figure 16, a
cavitating jet using a large nozzle at relatively low injection pressure introduces larger compressive
residual stress into a deeper region. Note that the jet power of d = 0.35 mm at p1 = 300 MPa and that of
d = 2 mm at p1 = 30 MPa are nearly equivalent. A plunger pump of 300 MPa is expensive compared
with a 30 MPa pump. When larger nozzles, such as 2 mm in diameter, are used, 10 MPa would be
enough to introduce compressive residual stress into stainless steel [102].
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4.5. Cavitation Number

As cavitating flow is used for cavitation peening, cavitation number σ, which is defined by
Equation (2), is one of the most important parameters. The cavitating region increases with a decrease
of cavitation number [2,47]. The aggressive intensity of cavitation through a Venturi tube does not
monotonously increase with cavitating length, i.e., a decrease of cavitation number; it peaks at a
certain cavitation number [47]. Figure 17 shows the normalized aggressive intensity of a cavitating jet
as a function of cavitation number at constant injection pressure [3]. At constant injection pressure,
cavitation number increases with increasing downstream pressure. At higher downstream pressures,
cavitation bubbles collapse violently, although the bubbles become smaller. At too low a cavitation
number, i.e., too low downstream pressure or too high injection pressure, the bubble collapse becomes
soft. When cavitation number decreases, the cavitating region increases, but the individual impacts
strengthen. This is why the aggressive intensity of the jet peaked at σ = 0.01–0.02, as shown in Figure 17.
The aggressive intensity of a cavitating jet with p1 = 98 MPa had a peak at σ = 0.01–0.014 [103], and
the jet with p1 = 20 MPa had a peak at σ = 0.014 [104]. The cavitation number, where it peaked,
slightly changed with nozzle outlet geometry, but was in the range of 0.01 to 0.02 [105]. As the
downstream pressure at the conventional cavitation peening using an open water-filled chamber is at
nearly atmospheric pressure, i.e., p2 ≈ 0.1 MPa, from the cavitation number viewpoint, the aggressive
intensity of the jet decreases with increasing injection pressure at p1 > 10 MPa as σ < 0.01. From
the injection pressure viewpoint, the aggressive intensity of the jet increases. Thus, total aggressive
intensity of the jet peaks as a function of injection pressure. The details are provided in Figure 19 as
referred to hereinafter.
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4.6. Geotrty Effect of Treatment Section

At conventional cavitation peening, a high-speed water jet is injected into a water-filled chamber.
As cavitation is hydrodynamic phenomenon, flow pattern affects aggressive intensity of the jet which
relates the peening intensity. As it was reported that the erosion induced by the cavitating jet was
affected by the size and the geometry of the chamber [106,107], the peening intensity changes with the
size and geometry of the chamber.

The peening effect of the water depth of an open chamber was investigated, and the authors
found that the water depth needs to be considered to mitigate the cushioning effect caused by air
bubbles entrained into the jet [3]. The other main factors are the attack angle of the jet and the shape of
the target. The effect of incident angle of the cavitating jet was reported [99,108]. When convex and
concave surface were treated by a cavitating jet, the peening area changed with the curvature of the
surface [109].
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4.7. Scanning Pitch and Speed

As shown in Figure 8, the peening area of the fixed cavitating jet is a ring pattern. To treat a
wider area, the jet should scan the target or the target should be moved with a fixed jet. The optimum
overlapping scanning pitch of the jet was revealed by estimating the aggressive intensity distribution
of the jet [110].

As the individual impact produced by cavitation bubble collapse causes individual plastic
deformation, and the compressive residual stresses result from total summation of the plastic
deformation, the introduced residual stress σR changes with processing time per unit length tp

as described by Equation (4) [65]:

σR = (σsat − σ0)
(
1− e−a tp

)
+ σ0 (4)

where σ0 and σsat are initial and saturated residual stress, respectively, and a is a constant.

4.8. Water Qualities

As cavitation is a phase change phenomenon from liquid to gas, the temperature and gas content
affect the aggressive intensity of the cavitation bubble collapse. The effect of temperature and gas
contest on cavitation erosion was revealed using a vibratory cavitation erosion test [111–113]. For a
cavitating jet, the effect of temperature on erosion rate was confirmed [114–116]. The peening intensity
was measured as 278–308 K, and the peening intensity was nearly constant at 288–308 K [3]. Han et
al. tried to enhance cavitation peening intensity by aeration; however, they concluded that further
investigations and process optimization still need to be conducted [35]. As mentioned in Section 4.3,
although cavitation nuclei are required for the cavitating jet, the presence of too many air bubbles
reduces the impact due to the cushion effect [2]. The usage of oil for cavitation peening was proposed,
and compressive residual stress into aluminum alloy was introduced [117].

4.9. Material Properties

To estimate or avoid cavitation erosion, the relationship between cavitation impact and material
properties such as hardness was investigated [118]. As cavitation erosion is a kind of fatigue failure, a
concept of fundamental threshold level on cavitation erosion was suggested [119]. An experimental
method used to obtain the threshold level of materials using a cavitating jet apparatus was proposed,
and the threshold levels of metals and plastics were identified [8]. In the case of a single cavitation
bubble induced by a pulse laser, the threshold level on peening effect was revealed experimentally,
which was confirmed by numerical simulation [120]. To treat harder materials, severe impacts are
required or a longer treatment time.

5. Estimation of Aggressive Intensity of Cavitation Peening

As mentioned in Section 4.5, when injection pressure increases, cavitation number decreases.
From the cavitation number viewpoint, in the region of σ < 0.01, i.e., p1 > 10 MPa at p2 = 0.1 MPa,
increases in the injection pressure decrease the aggressive intensity of the jet. The increase in the
injection pressure can increase the aggressive intensity of the jet at a constant cavitation number. Thus,
to estimate the aggressive intensity of the jet Icav est at the optimum standoff distance from injection
pressure p1 and nozzle diameter d, an experimental formula was proposed as follows [101]:

Icav est = Icav re f Kn
f (σ)

f
(
σre f

) (
d

dre f

)nd
(

p1

p1 re f

)np

(5)

where Icav ref is a reference aggressive intensity of a jet under the reference condition; the parameters
with the subscript ref are those for the reference conditions, Kn depends on the geometry of the nozzle
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and/or the test section, and nd and np are the exponents of the power laws. The f (σ) is a function of
cavitation intensity and is related to cavitation number, and the following equation was proposed [3]:

f (σ) = σ−1.8 {
p1(σ− σs) − p′v

}
(6)

where σs and pv’ are the correlation factors of the cavitation number and the pseudo vapor pressure,
respectively. The aggressive intensity of the jet was estimated using Equation (5) and the difference
between the estimated and experimental values is 16% at constant σ [3].

6. Difference between Cavitation Peening and Water Jet Peening

6.1. Standoff Distance

The term ‘water jet peening’ has been used for different peening methods, as shown in Table 1 [95].
To avoid misunderstanding of peening mechanism, the term ‘cavitation peening’ is used for the peening
method using cavitation impact, and water jet peening is used for the peening method using water
column impacts.

As mentioned in Section 4.2, the first peak results from water jet peening, the second peak is
caused by cavitation peening, and the optimum standoff distance sopt is shown in Equation (3) [98].
Then, a classification map for cavitation peening and water jet peening was proposed considering
cavitation number σ and sopt, which was normalized by the nozzle throat diameter d, as shown in
Figure 18 [95]. More than 150 points [17,39–41,96,100,102,106,121–127] are plotted in Figure 18, and
the line described by Equation (7) divides two regions, i.e., the first and second peak regions. The
upper right hand region is cavitation peening and the lower left hand side region is the water jet
peening region.

sopt

d
= 1.8 σ−0.6 (7)

The usage of Figure 18 is as follows:

(1) Find the optimum standoff distance sopt changes with distance from the nozzle to the target
using experiments.

(2) Calculate sopt/d.
(3) Calculate 1.8 σ−0.6 using Equation (2). Note that p1 and p2 in Equation (2) are absolute pressures.
(4) If experimental sopt/d is larger than the sopt/d obtained in step (3), the peening is cavitation peening.
(5) If experimental sopt/d is smaller than the sopt/d obtained in step (3), the peening is water jet peening.

If cavitation peening is desired, find the other optimum standoff distance on the far side of the
nozzle using experiments.

Table 1. Colloquial terms for water jet peening [95].

Method Mechanism of Impact Source of Impact

Wet shot peening Solid collision Shot

Water jet peening Liquid collision Water droplet

Cavitation peening Shockwave Cavitation collapse
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6.2. Peening Intensity

To compare the peening intensity between water jet peening and cavitation peening, Figure 19
depicts the peening capability β calculated from arc height changes with injection pressure at constant
downstream pressure considering treatment width [97]. For both water jet peening and cavitation
peening, the optimum standoff distance was obtained by measuring the arc height with the standoff

distance, then the peening capability at the optimum standoff distance was evaluated. As shown in
Figure 19a, for water jet peening, β increases with injection pressure. When the power law is assumed,
the exponent is about 2.2. In the case of cavitation peening, β has a maximum at p1 = 40 MPa. Note
that the maximum value of cavitation peening is 1.7 times larger than that of water jet peening. As the
jet power, which is defined by the injection pressure and the flow rate, of 60 MPa is 1.8 times larger
than that of 40 MPa, the peening efficiency of cavitation peening is about three times better than that of
water jet peening.
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7. Comparison between Cavitation Peening and Other Peening Methods

To compare cavitation peening (CP) with the other peening methods, such as shot peening (SP),
laser peening (LP), and water jet peening (WJP), Figure 20 shows the results of a plane bending fatigue
test of stainless steel [54]. In Figure 20, the amplitude of bending stress was normalized by the fatigue
strength of non-peened amplitude of 279 MPa. For all cases, the optimum processing time or optimum
pulse density was obtained from the changes in fatigue life at 400 MPa with processing time or pulse
density [86]. As shown in Figure 20, the fatigue life of shot peening at 400 MPa was longer than that
of cavitation peening; however, the fatigue strength of cavitation peening was stronger than that of
shot peening.
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A singular characteristic of cavitation peening on the microstrain of quenched tool steel alloy is
that the microstrain was relieved by introducing compressive residual stress [128,129]. As expected,
many dislocations were introduced by quenching and/or machining. These dislocations can be moved
to the grain boundaries and disappear using high frequency vibrations induced by cavitation impacts,
as the cyclic loading or ultrasonic vibration move dislocations [130–132]. In the case of conventional
shot peening, dislocations increased due to solid collision. However, for cavitation peening, the
disappearance of dislocations is more frequent compared with the increase in the dislocations, as no
solid collisions occur with cavitation peening. The possibility of the movement of dislocations was
confirmed by observation using a transmission electron microscope (TEM) [133].

The microstructures of metallic materials treated by cavitation peening were investigated by
comparison with other processes [134–136]. The increase in surface roughness was less than that of the
other processes [134]. When the plastic deformation inside the material was evaluated using the Fry
etching method, the depth of the dent of cavitation peening and laser peening was shallower than that
of shot peening [137,138], resulting from the difference in the strain speed of the process, as the plastic
deformation of cavitation peening and laser peening is caused by the shockwave process.

8. Application of Cavitation Peening

8.1. Suppression of Environmental Assisted Cracking

As mentioned in Section 2, at the beginning, the main purpose of cavitation peening is mitigation
of stress corrosion cracking [10,123], which was successfully applied to nuclear power plants [11].
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Although cavitation causes erosion and corrosion, cavitation improved the corrosion resistance,
as cavitation can generate inactivity layer by oxidation [139]. The electrochemical characteristics
induced by cavitation peening were also reported [140].

From the environmental-assisted cracking viewpoint, hydrogen embrittlement and delayed
fracture are similar to stress corrosion cracking. The suppression of hydrogen-assisted fatigue crack
growth in austenitic stainless steel and delayed fracture resistance on chrome molybdenum steel by
cavitation peening were reported [141,142].

8.2. Improvement of Fatigue Properites

Improvements in the fatigue strength of metallic materials, such as aluminum alloy [4,117,143],
carbonized steel [12], nitrocarburized steel [29], stainless steel [28], silicon manganese steel [32], and
titanium alloy [38], by cavitation peening were reported. Additive manufactured titanium alloy was
also tested in comparison with shot peening and laser peening, and the fatigue strength was improved
by cavitation peening by about two times in comparison with non-peened [44]. The reasons for the
improvement are the increase in yield stress by work hardening and the introduction of compressive
residual stress [45]. The actual mechanical components, such as CVT elements [13] and gear [14,15],
were treated by cavitation peening and their improvements in fatigue strength were reported. Figure 21
shows a cavitating jet injecting to the gear. The geometry of the gear in Figure 21 is that of the gear
tested in the reference [15]. To clarify the mechanism of improvement in fatigue strength by cavitation
peening, the crack initiation and crack growth of a surface modified layer treated by cavitation peening
were evaluated in comparison with other peening methods [144,145].
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8.3. Improvement in Triborogical Properties

As cavitation peening is shotless peening, as mentioned above, cavitation peening can introduce
compressive residual stress and work hardening with less of an increase in surface roughness in
comparison with other processes. Thus, cavitation peening improves the fretting fatigue properties
and/or pitting resistance [37,146–148]. The pressure distribution of individual cavitation impact was
evaluated using a magnesium-oxide single crystal, and the authors concluded that the highly intense
impact was applied to the center [149]. Figure 22 shows the typical plastic deformation pit induced
by cavitation impact on pure aluminum compared with ball indentation, which is a model of shot
impact [150]. As shown in Figure 22, the edge of the plastic deformation pit induced by cavitation
impact is smoother compared with that of ball indentation. The pit induced by the cavitation impact
seems to be suitable for an oil pool. This shape can be used for tribological applications.
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8.4. Gettering Effect of Silicon Wafer

Cavitation peening can be used for silicon wafers as well as metallic materials, as cavitation impact
can be used for the gettering technique. The gettering technique is an essential method used to remove
unwanted impurities from active device regions in the manufacturing of semiconductors [151–155].
The most popular and conventional gettering technique is the introduction of backside damage of silicon
wafer by impact of SiO2 particles [156,157]. However, the fractions of the particle form an additional
source of contamination during subsequent wafer processing. Cavitation peening can introduce
backside damage without contamination, as shots are not required. Kumano et al. successfully applied
cavitation impacts for the gettering technique, proved by photo-capacitance measurements [158]. Note
that impacts that introduce strain without cracks are required for the introduction of the gettering site.
This is a typical demonstration that the cavitation impacts induced by the cavitating jet are controllable.

9. Conclusions

In the present review, to reliably and safely apply cavitation peening in practical applications, the
research and applications of cavitation peening were reviewed in comparison with water jet peening
and other peening methods. To use cavitation peening, the most important aspect is experimental
classification between cavitation peening and water jet peening. For cavitation peening, a submerged
water jet with a large nozzle at low injection pressure is suitable. The important characteristics of
cavitation peening are summarized as follows:

(1) Cavitation peening can mitigate environmentally assisted cracking, such as stress corrosion
cracking, hydrogen belittlement, and delayed fracture. It is also applied for the improvement of
fatigue strength and tribological properties of metallic materials.

(2) For conventional cavitation peening, a submerged high-speed water jet is used. However, the
peening mechanisms of cavitation peening and water jet peening are different. Cavitation peening
uses the impacts of bubble collapses. Water jet peening uses water column impacts. Note that
submerged high-speed water can also treat the target by water jet peening.

(3) For cavitation peening using an open water-filled chamber, peening intensity has a maximum
at a certain injection pressure of about 40 MPa. The peening intensity of cavitation peening at
40 MPa is larger than that of water jet peening at 60 MPa.

(4) Cavitation peening and water jet peening are classified by the relationship between cavitation
number and the normalized distance from the nozzle to the target.

(5) Submerged laser peening is a kind of cavitation peening using the impact at the collapse of the
bubble, which develops after the laser ablation when it is optimized.
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Appendix A

Figure A1 depicts a schematic diagram of curvature 1/ρ obtained from the arc height h1 of the
chord length L1. Using Pythagorean theorem, radius of curvature ρ is expressed by h1 and L1 as
shown in Equation (A1). As shown in Equation (A2), radius of curvature ρ is derived from Equation
(A1). Then, the curvature 1/ρ is obtained, as shown in Equation (A3), which is proportional to the arc
height, which is normally used for Almen strips to evaluate the intensity of shot peening. As shown in
Figure A1, when a different chord length L2 is used, the arc height h2 is different. However, curvature
1/ρ is a unique parameter. Thus, the curvature 1/ρ is used in the present review instead of the arc height.
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