Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers
Abstract
:1. Introduction
2. Models and Methods
3. Results and Discussion
3.1. Patterning of PFNs
3.2. Role of Polymer Mobility
3.3. Broken Symmetry
3.4. Comparison with Existing Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choueiri, R.M.; Galati, E.; Thérien-Aubin, H.; Klinkova, A.; Larin, E.M.; Querejeta-Fernández, A.; Han, L.; Xin, H.L.; Gang, O.; Zhulina, E.B.; et al. Surface Patterning of Nanoparticles with Polymer Patches. Nature 2016, 538, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.M.; Myerson, J.W.; Stellacci, F. Spontaneous Assembly of Subnanometre-Ordered Domains in the Ligand Shell of Monolayer-Protected Nanoparticles. Nat. Mater. 2004, 3, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Harkness, K.M.; Balinski, A.; McLean, J.A.; Cliffel, D.E. Nanoscale Phase Segregation of Mixed Thiolates on Gold Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 10554–10559. [Google Scholar] [CrossRef]
- Lattuada, M.; Hatton, T.A. Synthesis, Properties and Applications of Janus Nanoparticles. Nano Today 2011, 6, 286–308. [Google Scholar] [CrossRef]
- Andala, D.M.; Shin, S.H.R.; Lee, H.Y.; Bishop, K.J.M. Templated Synthesis of Amphiphilic Nanoparticles at the Liquid-Liquid Interface. ACS Nano 2012, 6, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Vilain, C.; Goettmann, F.; Moores, A.; Le Floch, P.; Sanchez, C. Study of Metal Nanoparticles Stabilised by Mixed Ligand Shell: A Striking Blue Shift of the Surface-Plasmon Band Evidencing the Formation of Janus Nanoparticles. J. Mater. Chem. 2007, 17, 3509–3514. [Google Scholar] [CrossRef]
- Bao, C.; Tang, S.; Wright, R.A.E.; Tang, P.; Qiu, F.; Zhu, L.; Zhao, B. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles. Macromolecules 2014, 47, 6824–6835. [Google Scholar] [CrossRef]
- Chen, Q.; Bae, S.C.; Granick, S. Directed Self-Assembly of a Colloidal Kagome Lattice. Nature 2011, 469, 381–384. [Google Scholar] [CrossRef]
- Glotzer, S.C.; Solomon, M.J. Anisotropy of Building Blocks and Their Assembly into Complex Structures. Nat. Mater. 2007, 6, 557–562. [Google Scholar] [CrossRef]
- Gröschel, A.H.; Walther, A.; Löbling, T.I.; Schacher, F.H.; Schmalz, H.; Müller, A.H.E. Guided Hierarchical Co-Assembly of Soft Patchy Nanoparticles. Nature 2013, 503, 247–251. [Google Scholar] [CrossRef]
- Blakey, I.; Merican, Z.; Thurecht, K.J. A Method for Controlling the Aggregation of Gold Nanoparticles: Tuning of Optical and Spectroscopic Properties. Langmuir 2013, 29, 8266–8274. [Google Scholar] [CrossRef] [PubMed]
- Farokhzad, O.C. DNA Self-Assembly of Targeted Near-Infrared Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy. Angew. Chem. Int. Ed. 2012, 51, 11853–11857. [Google Scholar]
- Kim, J.; Song, X.; Kim, A.; Luo, B.; Smith, J.W.; Ou, Z.; Wu, Z.; Chen, Q. Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores. Macromol. Rapid Commun. 2018, 39, 1800101. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.; Tebbe, M.; Querejeta-Fernandez, A.; Xin, H.L.; Gang, O.; Zhulina, E.B.; Kumacheva, E. Shape-Specific Patterning of Polymer Functionalized Nanoparticles. ACS Nano 2017, 11, 4995–5002. [Google Scholar] [CrossRef] [PubMed]
- Woehrle, G.H.; Brown, L.O.; Hutchison, J.E. Thiol-Functionalized, 1.5-nm Gold Nanoparticles through Ligand Exchange Reactions: Scope and Mechanism of Ligand Exchange. J. Am. Chem. Soc. 2005, 127, 2172–2183. [Google Scholar] [CrossRef]
- Jiang, Y.; Huo, S.; Mizuhara, T.; Das, R.; Lee, Y.-W.; Hou, S.; Moyano, D.F.; Duncan, B.; Liang, X.-J.; Rotello, V.M. The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano 2015, 9, 9986–9993. [Google Scholar] [CrossRef]
- Luo, Z.; Hou, J.; Menin, L.; Ong, Q.K.; Stellacci, F. Evolution of the Ligand Shell Morphology during Ligand Exchange Reactions on Gold Nanoparticles. Angew. Chem. Int. Ed. 2017, 56, 13521–13525. [Google Scholar] [CrossRef]
- Borzenkov, M.; Chirico, G.; D’Alfonso, L.; Sironi, L.; Collini, M.; Cabrini, E.; Dacarro, G.; Milanese, C.; Pallavicini, P.; Taglietti, A.; et al. Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. Langmuir 2015, 31, 8081–8091. [Google Scholar] [CrossRef]
- Tao, H.; Chen, L.; Galati, E.; Manion, J.G.; Seferos, D.S.; Zhulina, E.B.; Kumacheva, E. Helicoidal Patterning of Gold Nanorods by Phase Separation in Mixed Polymer Brushes. Langmuir 2019, 35, 15872–15879. [Google Scholar] [CrossRef]
- Percebom, A.M.; Giner-Casares, J.J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzan, L.M. Janus Gold Nanoparticles Obtained via Spontaneous Binary Polymer Shell Segregation. Chem. Commun. 2016, 52, 4278–4281. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, M.J.; Templeton, A.C.; Murray, R.W. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir 1999, 15, 3782–3789. [Google Scholar] [CrossRef]
- Nørgaard, K.; Weygand, M.J.; Kjaer, K.; Brust, M.; Bjørnholm, T. Adaptive Chemistry of Bifunctional Gold Nanoparticles at the Air/Water Interface. A Synchrotron X-Ray Study of Giant Amphiphiles. Faraday Discuss. 2004, 125, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Galati, E.; Tao, H.; Rossner, C.; Zhulina, E.B.; Kumacheva, E. Morphological Transitions in Patchy Nanoparticles. ACS Nano 2020, 14, 4577–4584. [Google Scholar] [CrossRef]
- Fredrickson, G.H. The Equilibrium Theory of Inhomogeneous Polymers; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Edwards, S.F. The Statistical Mechanics of Polymers with Excluded Volume. Proc. Phys. Soc. 1965, 85, 613–624. [Google Scholar] [CrossRef]
- Matsen, M.W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt. Phys. Rev. Lett. 1994, 72, 2660–2663. [Google Scholar] [CrossRef] [PubMed]
- Bohbot-Raviv, Y.; Wang, Z.-G. Discovering New Ordered Phases of Block Copolymers. Phys. Rev. Lett. 2000, 85, 3428–3431. [Google Scholar] [CrossRef]
- Matsen, M.W.; Thompson, R.B. Equilibrium Behavior of Symmetric ABA Triblock Copolymer Melts. J. Chem. Phys. 1999, 111, 7139–7146. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.-G. Theory of Polymer Chains in Poor Solvent: Single-Chain Structure, Solution Thermodynamics and θ Point. Macromolecules 2014, 47, 4094–4102. [Google Scholar] [CrossRef]
- Li, W.; Nealey, P.F.; de Pablo, J.J.; Müller, M. Defect Removal in the Course of Directed Self-Assembly is Facilitated in the Vicinity of the Order-Disorder Transition. Phys. Rev. Lett. 2014, 113, 168301. [Google Scholar] [CrossRef]
- Gao, Y.; Deng, H.; Li, W.; Qiu, F.; Shi, A.-C. Formation of Nonclassical Ordered Phases of AB-Type Multi-Arm Block Copolymers. Phys. Rev. Lett. 2016, 116, 068304. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.Z.Y. Influence of Chain Rigidity on the Phase Behavior of Wormlike Diblock Copolymers. Phys. Rev. Lett. 2013, 110, 138305. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, J.; Zhang, L. Hierarchically Ordered Microstructures Self-Assembled from A(BC)n Multiblock Copolymers. Macromolecules 2010, 43, 1602–1609. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Lin, J.; Zhang, L. Ordered Nanostructures Self-Assembled from Block Copolymer Tethered Nanoparticles. ACS Nano 2010, 4, 4979–4988. [Google Scholar] [CrossRef] [PubMed]
- Roan, J.-R. Soft Nanopolyhedra as a Route to Multivalent Nanoparticles. Phy. Rev. Lett. 2006, 96, 248301. [Google Scholar] [CrossRef]
- Kim, J.U.; Matsen, M.W. Interaction between Polymer-Grafted Particles. Macromolecules 2008, 41, 4435–4443. [Google Scholar] [CrossRef]
- Roan, J.-R.; Kawakatsu, T. Self-Consistent-Field Theory for Interacting Polymeric Assemblies. I. Formulation, Implementation, and Benchmark Tests. J. Chem. Phys. 2002, 116, 7283–7294. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Tang, P.; Qiu, F.; Yang, Y.; Zhu, L. Mixed Homopolymer Brushes Grafted onto a Nanosphere. J. Chem. Phys. 2011, 134, 134903. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Y.; Zhu, L.; Zhao, B.; Tang, P.; Qiu, F. Binary Mixed Homopolymer Brushes Grafted on Nanorod Particles: A Self-Consistent Field Theory Study. J. Chem. Phys. 2013, 139, 214902. [Google Scholar] [CrossRef]
- Koski, J.; Chao, H.; Riggleman, R.A. Predicting the Structure and Interfacial Activity of Diblock Brush, Mixed Brush, and Janus-Grafted Nanoparticles. Chem. Commun. 2015, 51, 5440–5443. [Google Scholar] [CrossRef]
- Koski, J.; Frischknecht, A.L. Fluctuation Effects on the Brush Structure of Mixed Brush Nanoparticles in Solution. ACS Nano 2018, 12, 1664–1672. [Google Scholar] [CrossRef]
- Meng, D.; Wang, Q. Solvent Response of Diblock Copolymer Brushes. J. Chem. Phys. 2009, 130, 134904. [Google Scholar] [CrossRef]
- Kim, J.U.; Matsen, M.W. Positioning Janus Nanoparticles in Block Copolymer Scaffolds. Phys. Rev. Lett. 2009, 102, 078303. [Google Scholar] [CrossRef]
- Chantawansri, T.L.; Hur, S.-M.; García-Cervera, C.J.; Ceniceros, H.D.; Fredrickson, G.H. Spectral Collocation Methods for Polymer Brushes. J. Chem. Phys. 2011, 134, 244905. [Google Scholar] [CrossRef] [PubMed]
- Drolet, F.; Fredrickson, G.H. Combinatorial Screening of Complex Block Copolymer Assembly with Self-Consistent Field Theory. Phys. Rev. Lett. 1999, 83, 4317–4320. [Google Scholar] [CrossRef]
- Ganesan, V.; Fredrickson, G.H. Field-Theoretic Polymer Simulations. Europhys. Lett. 2001, 55, 814–820. [Google Scholar] [CrossRef]
- Rasmussen, K.Ø.; Kalosakas, G. Improved Numerical Algorithm for Exploring Block Copolymer Mesophases. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1777–1783. [Google Scholar] [CrossRef]
- Eyert, V. A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences. J. Comput. Phys. 1996, 124, 271–285. [Google Scholar] [CrossRef]
- Kim, J.U.; Matsen, M.W. Droplets of Structured Fluid on a Flat Substrate. Soft Matter 2009, 5, 2889–2895. [Google Scholar] [CrossRef]
- Wang, L.; Lin, J.; Zhang, Q. Self-Consistent Field Theory Study of the Solvation Effect in Polyelectrolyte Solutions: Beyond the Poisson–Boltzmann Model. Soft Matter 2013, 9, 4015–4025. [Google Scholar] [CrossRef]
- Inkpen, M.S.; Liu, Z.-F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-Chemisorbed Gold−Sulfur Binding Prevails in Self-Assembled Monolayers. Nat. Chem. 2019, 11, 351–358. [Google Scholar] [CrossRef]
- Burgi, T. Properties of the Gold-Sulphur Interface: From Self-Assembled Monolayers to Clusters. Nanoscale 2015, 7, 15553–15567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, C.; Liu, H.; Zhang, S.; Yang, Y.; Zhang, Y.; Lu, Z.; Kumacheva, E.; Nie, Z. Self-Limiting Directional Nanoparticle Bonding Governed by Reaction Stoichiometry. Science 2020, 369, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A. Bistable Morphing Composites for Energy-Harvesting Applications. Polymers 2022, 14, 1893. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, E.B.; Elsheikh, A. Predicting Characteristics of Dissimilar Laser Welded Polymeric Joints Using a Multi-Layer Percep-trons Model Coupled with Archimedes Optimizer. Polymers 2023, 15, 233. [Google Scholar] [CrossRef] [PubMed]
Symbol | Description |
---|---|
PFN | Polymer-functionalized nanoparticle |
SCFT | Self-consistent field theory |
mb | Mobile brushes |
ib | Immobile brushes |
sol | Solvents |
nb | Number of polymer brushes on a nanoparticle |
nmb | Number of mobile brushes on a nanoparticle |
Nib | Number of immobile brushes on a nanoparticle |
N | Number of monomers of a chain |
f | Volume fraction of mobile brushes |
Density of nanoparticle at position r | |
rnp | Position of particle center |
Rnp | Radius of nanoparticles |
μsol | Chemical potential of solvents |
Potential fields, where k denotes ib, mb, and sol. | |
Density fields, where k denotes ib, mb, and sol. | |
Pressure fields, Lagrange multiplier | |
F | Free energy |
kB | Boltzmann constant |
T | Temperature |
χ | Flory–Huggins parameter |
Qk | Partition function of a single brush, where k denotes ib, mb, and sol |
qk(r,s) | Propagator at r for s monomer, where k = ib, mb |
qkf(r,s) | Complementary propagator at r for s monomer, where k = ib, mb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, S.; Wang, T.; Lin, J.; Wang, L. Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers. Materials 2023, 16, 1254. https://doi.org/10.3390/ma16031254
Gong S, Wang T, Lin J, Wang L. Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers. Materials. 2023; 16(3):1254. https://doi.org/10.3390/ma16031254
Chicago/Turabian StyleGong, Shuting, Tianyi Wang, Jiaping Lin, and Liquan Wang. 2023. "Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers" Materials 16, no. 3: 1254. https://doi.org/10.3390/ma16031254
APA StyleGong, S., Wang, T., Lin, J., & Wang, L. (2023). Patterning of Polymer-Functionalized Nanoparticles with Varied Surface Mobilities of Polymers. Materials, 16(3), 1254. https://doi.org/10.3390/ma16031254