Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Two-Step Fabrication of CCF/PEEK Wrapped Yarn
2.3. Surface Treatment of CCF/PEEK Wrapped Yarn
2.4. Three-Dimensional Printing of Composite Wire
2.5. Characterization
3. Results and Discussion
3.1. Preparation of CCF/PEEK Wrapped Yarn for 3D Printing
3.2. Mechanical Performance of 3D Printing CCF/PEEK Composite Wire
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Mizuno, M.; Bao, L.M.; Zhu, C.H. A Facile Molding Method of Continuous Fiber-Reinforced Thermoplastic Composites and Its Mechanical Property. Polymers 2022, 14, 947. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, T.Z.X.; Zhou, H.L.Z.; Huang, Z.G.; Peng, X.Q.; Zhou, H.M. A Numerical Simulation Method for the One-Step Compression-Stamping Process of Continuous Fiber Reinforced Thermoplastic Composites. Polymers 2021, 13, 3237. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.D.; Li, S.X.; Wang, J.H.; Ding, A.X. A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic composites. Compos. Part B Eng. 2021, 224, 109196. [Google Scholar] [CrossRef]
- Luan, C.C.; Yao, X.H.; Fu, J.Z. Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber-reinforced thermoplastic composite. Int. J. Adv. Manuf. Technol. 2021, 116, 3207–3215. [Google Scholar] [CrossRef]
- Obande, W.; Bradaigh, C.M.O.; Ray, D. Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion—A review. Compos. Part B Eng. 2021, 215, 108771. [Google Scholar] [CrossRef]
- Chen, Y.W.; Shan, Z.D.; Yang, X.J.; Fan, C.Z.; Song, Y.X. Influence of preheating temperature and printing speed on interlaminar shear performance of laser-assisted additive manufacturing for CCF/PEEK composites. Polym. Compos. 2022, 43, 3412–3425. [Google Scholar] [CrossRef]
- Luo, M.; Tian, X.Y.; Shang, J.F.; Yun, J.X.; Zhu, W.J.; Li, D.C.; Qin, Y.J. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105812. [Google Scholar] [CrossRef]
- Um, H.J.; Lee, J.S.; Shin, J.H.; Kim, H.S. 3D printed continuous carbon fiber reinforced thermoplastic composite sandwich structure with corrugated core for high stiffness/load capability. Compos. Struct. 2022, 291, 115590. [Google Scholar] [CrossRef]
- Huang, Y.M.; Tian, X.Y.; Zheng, Z.Q.; Li, D.C.; Malakhov, A.V.; Polilov, A.N. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure. Compos. Struct. 2022, 285, 115241. [Google Scholar] [CrossRef]
- Chen, X.J.; Fang, G.X.; Liao, W.H.; Wang, C.C.L. Field-Based Toolpath Generation for 3D Printing Continuous Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2022, 49, 102470. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Q.J.; Cao, H.; Yuan, Y. Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing. J. Renew. Mater. 2022, 10, 329–358. [Google Scholar] [CrossRef]
- Fu, Y.T.; Yao, X.F. Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites. Compos. Sci. Technol. 2021, 216, 109065. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Q.J.; Cao, H.; Yuan, Y. Effect of fibre arrangements on tensile properties of 3D printed continuous fibre-reinforced thermoplastic composites. Plast. Rubber Compos. 2022, 51, 85–97. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Ishak, M.R.; Taha, M.M.; Mustapha, F.; Leman, Z. Investigation of ABS-oil palm fiber (Elaeis guineensis) composites filament as feedstock for fused deposition modeling. Rapid Prototyp. J. 2022. ahead of print. [Google Scholar] [CrossRef]
- Lau, K.T.; Taha, M.M.; Abd Rashid, N.H.; Manogaran, D.; Ahmad, M.N. Effect of HBN fillers on rheology property and surface microstructure of ABS extrudate. J. Teknol. 2022, 84, 175–182. [Google Scholar] [CrossRef]
- Yasa, E.; Kruth, J.P. Investigation of laser and process parameters for Selective Laser Erosion. Precis. Eng. 2010, 34, 101–112. [Google Scholar] [CrossRef]
- Parandoush, P.; Tucker, L.; Zhou, C.; Lin, D. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater. Des. 2017, 131, 186–195. [Google Scholar] [CrossRef]
- Yasa, E.; Kruth, J.P.; Deckers, J. Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting. CIRP Ann. Manuf. Technol. 2011, 60, 263–266. [Google Scholar] [CrossRef]
- Xu, Z.P.; Zhang, M.; Gao, S.H.; Wang, G.B.; Zhang, S.L.; Luan, J.S. Study on mechanical properties of unidirectional continuous carbon fiber-reinforced PEEK composites fabricated by the wrapped yarn method. Polym. Compos. 2019, 40, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.P.; Zhang, M.; Wang, G.B.; Luan, J.S. Bending property and fracture behavior of continuous glass fiber-reinforced PEEK composites fabricated by the wrapped yarn method. High Perform. Polym. 2019, 31, 321–330. [Google Scholar] [CrossRef]
- Xu, Z.P.; Wang, G.B.; Hu, J.Z.; Zhang, M.; Zhang, S.L.; Gai, X.Z.; Li, Y.G.; Yu, R.; Luan, J.S. Influence of processing conditions on tensile property of continuous glass fiber-reinforced PEEK composites fabricated by the co-wrapped yarn method. High Perform. Polym. 2018, 30, 489–499. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M. Investigation of Pattern Style of Woven Fabrics Produced from Hybrid Wrap Spun Yarns on Fabricated Composite. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Zhou, N.T.; Geng, X.Y.; Ye, M.Q.; Yao, L.; Shan, Z.D.; Qiu, Y.P. Mechanical and sound adsorption properties of cellular poly (lactic acid) matrix composites reinforced with 3D ramie fabrics woven with co-wrapped yarns. Ind. Crops Prod. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Berglin, L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos. Part A Appl. Sci. Manuf. 2013, 50, 93–101. [Google Scholar] [CrossRef]
- Jiang, J.H.; Wang, Z.X.; Chen, N.L. Natural fibre/polypropylene wrap spun yarns and preforms for structured thermoplastic composites. In Proceedings of the 7th International Forum on Advanced Material Science and Technology, Dalian, China, 26–28 June 2011. [Google Scholar]
- Zhang, L.; Huang, G.; Liu, Z.Z. Study on the Natural fiber/pp Wrap Spun Yarns Reinforced Thermoplastic Composites. In Proceedings of the 2nd International Conference on Manufacturing Science and Engineering, Guilin, China, 9 April 2011. [Google Scholar]
- Ho, K.K.C.; Shamsuddin, S.R.; Riaz, S.; Lamorinere, S.; Tran, M.Q.; Javaid, A.; Bismarck, A. Wet impregnation as route to unidirectional carbon fibre reinforced thermoplastic composites manufacturing. Plast. Rubber Compos. 2011, 40, 100–107. [Google Scholar] [CrossRef]
- Lou, C.W.; Hu, J.J.; Lu, P.C.; Lin, J.H. Effect of twist coefficient and thermal treatment temperature on elasticity and tensile strength of wrapped yarns. Text. Res. J. 2016, 86, 24–33. [Google Scholar] [CrossRef]
- Hassan, E.A.M.; Elagib, T.H.H.; Memon, H.; Yu, M.; Zhu, S. Surface Modification of Carbon Fibers by Grafting PEEK-NH2 for Improving Interfacial Adhesion with Polyetheretherketone. Materials 2019, 12, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Zhang, Y.; Liu, T.; Li, D. Prepreg Preparation and 3D Printing of Continuous Carbon Fiber Reinforced Nylon Composite. Aeronaut. Manuf. Technol. 2021, 64, 24–33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shen, H.; Yang, L.; Ge, D. Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties. Materials 2023, 16, 1168. https://doi.org/10.3390/ma16031168
Zhang J, Shen H, Yang L, Ge D. Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties. Materials. 2023; 16(3):1168. https://doi.org/10.3390/ma16031168
Chicago/Turabian StyleZhang, Jianghu, Hao Shen, Lili Yang, and Dengteng Ge. 2023. "Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties" Materials 16, no. 3: 1168. https://doi.org/10.3390/ma16031168
APA StyleZhang, J., Shen, H., Yang, L., & Ge, D. (2023). Two-Step Preparation of CCF/PEEK Wrapped Yarn for 3D Printing Composites with Enhanced Mechanical Properties. Materials, 16(3), 1168. https://doi.org/10.3390/ma16031168