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Abstract: Due to the non-polar nature and low wettability of carbon fibers (CFs), the interfacial
adhesion between CFs and the polyetheretherketone (PEEK) matrix is poor, and this has negative
effects on the mechanical properties of CF/PEEK composites. In this work, we established a
modification method to improve the interface between CFs and PEEK based chemical grafting
of aminated polyetheretherketone (PEEK-NH2) on CFs to create an interfacial layer which has
competency with the PEEK matrix. The changed chemical composition, surface morphology, surface
energy, and interlaminar shear strength were investigated. After grafting, the interlaminar shear
strength (ILSS) was improved by 33.4% due to the covalent bonds in the interface region, as well as
having good compatibility between the interface modifier and PEEK. Finally, Dynamic Mechanical
Analysis (DMA) and Scanning Electron Microscopy (SEM) observation also confirmed that the
properties of the modified CF/PEEK composites interface were enhanced. This work is, therefore, a
beneficial approach towards enhancing the mechanical properties of thermoplastic composites by
controlling the interface between CFs and the PEEK matrix.

Keywords: carbon fiber (CF); polyetheretherketone (PEEK); aminated polyetheretherketone
(PEEK-NH2); interfacial adhesion

1. Introduction

As lightweight materials, carbon fiber/polyetheretherketone (CF/PEEK) composites have been
used in a broad range of applications with a promising future in automobiles, aerospace, military
defense, biomedicine, and the electronic industry, owing to their low density, high specific strength,
and high thermal stability [1–4]. Previous studies have proved that the effective mechanical properties
of the composites depend on the properties of each of the components as well as on the fiber/matrix
interface quality [5]. However, PEEK exhibits some drawbacks such as poor adhesion of hydrophilic
reactive groups in PEEK chains [6,7]. On the other hand, due to its non-polar surface and compound of
highly crystallized graphitic basal planes with inert structures, the pristine CFs have poor interaction
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with most of the polymers [8]. For these reasons, their applications have been limited because of
weak fiber-matrix adhesion, which causes premature failure of the composites [9], thus, encouraging
improvements in their performance for more demanding technological applications. Therefore,
varieties of methods regarding surface modifications of CFs were established to improve the interfacial
adhesion of composites, such as oxidation treatment, plasma, and ozone treatment [10–15]. However,
most of them were established for improving interfacial adhesion between CFs and thermosetting
polymers because of strong chemical interactions between modified CFs and thermosetting polymers.
In the case of thermoplastic polymers, it is difficult for the functional groups provided by thermoplastics
to react chemically with the surface functional groups of CFs. Therefore, only a little improvement can
be achieved by increasing surface roughness or interacting with oxygen-containing functional groups.
A polymer as compatibilizer that has a similar, or the same main component as the matrix, is desired
to promote interfacial adhesion of the composites [16]. Grafting of the compatibilizer of the modified
PEEK creates a strong interface layer on CFs, which improves interfacial adhesion between fiber and
the matrix by way of a “bridging” effect. The compatibilizer either interacts physically or chemically
with the fiber surface or has an excellent compatibility with the polymer matrix. Yuan et al. [17]
applied polyethersulfone (PES) emulsion sizing to the CF surface, and the interfacial strength of
CF/PES composites was successfully increased by 26%. Liu et al. [18] improved interfacial adhesion of
CF/poly(phthalazinoneether ketone) (PPEK) by coating it in a PPEK film. Based on the discussions
above, it can be maintained that grafting matrix-compatible resin on the CF surface may produce a
synergistic effect on improving the interfacial properties of composites.

In this study, low contents of PEEK with plentiful amine groups on its molecular chains were
chosen as the modifiers and were grafted onto CFs by covalent linkage. It is expected that those
physical and chemical bonds, as well as molecular chain entanglement between modified PEEK and
the PEEK matrix, are beneficial to the improvement of interfacial interactions.

2. Materials and Methods

2.1. Materials

CF fabrics (3K-T300-plain) were provided by Toray Industries, Inc. (Tokyo, Japan).
PEEK (1000-300G) was supplied in film form by Victrex (Lancashire, UK). Acetone (≥99.5%) was
received from Shanghai Yunli Economic and Trading Co., Ltd. (Shanghai, China). Dimethylacetamide
(DMA) was provided from Shanghai Ling Feng Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Amination of PEEK

A stirred suspension of PEEK in HNO3/H2SO4 was heated under the conditions specified in
Table 1. The product (PEEK-NO2) was filtered and washed with water until pH 7 was obtained, then it
was washed with ethanol, acetone and dried in an oven at 80 ◦C. SnCl2 was dissolved in HCl solution
(37%) and then ethanol (50 mL) was added into the mixture. After stirring at 65 ◦C for 15 min, the
prepared PEEK-NO2 powder was slowly poured in and the reaction was kept for 4 h at 65 ◦C. Then the
yellowish precipitate was filtered off and washed with distilled water. Followed by drying in an oven
for 24 h, yellowish PEEK-NH2 was prepared (Figure 1).

Table 1. Conditions of the nitration reaction of the products.

Batch T/(◦C) Reaction Time/(min)

PEEK-NH2-1 50 30
PEEK-NH2-2 50 60
PEEK-NH2-3 50 90
PEEK-NH2-4 50 120
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Figure 1. Amination of polyetheretherketone (PEEK).

2.3. Grafting PEEK-NH2 onto CFs

The CFs were refluxed in acetone for 48 h at 70 ◦C to remove sizing agents, then they were washed
repeatedly in deionized water and dried at 80 ◦C to obtain the desized CF. Subsequently, the CFs were
treated with Meldrum acid solution at 30 ◦C for 3 h followed by washing with acetone and drying.
The obtained CFs were denoted as activated-CFs (ACFs). The activated CFs were tied to a glass frame
and placed into PEEK-NH2/ dimethylformamide (DMF) solution with a different degree of amination,
then the reaction was performed under nitrogen atmosphere at 50 ◦C for 48 h to induce plenty of
PEEK-NH2 onto the CF surface. The samples were denoted as PEEK-NH2-1@CF, PEEK-NH2-2@CF,
PEEK-NH2-3@CF, and PEEK-NH2-4@CF. The overall reaction is shown in Figure 2.
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Figure 2. Complete representation of the grafting procedures.

2.4. Preparation of Modified CF/PEEK Resin Composites

The desized, modified CF and PEEK films were dried in a vacuum oven at 100 ◦C for 24 h
before the manufacturing procedures of composites took place. The laminates were manufactured by
alternatively placing 8 plies of CF fabrics and 9 plies of PEEK films with the transverse dimensions
of 200 mm × 150 mm. The compression molding method was used to prepare CF/PEEK composite
panels at 390 ◦C under the pressure of 2.5 MPa for 25 min. Finally, the laminates were cooled to 100 ◦C
with a cooling rate of 5 ◦C/min by keeping a constant pressure (2.5 MPa). The laminates had a matrix
volume fraction of 60%, a fiber volume fraction of 40%, and an average void content <2.5%.

3. Characterizations

Morphologies of modified CF and fractural morphologies of CF/PEEK composites were observed
using a scanning electron microscope (SEM) (HITACHI S-300N, Tokyo, Japan) with an acceleration
voltage of 15–18 kV. Solid-state NMR experiments were performed on a Bruker DMX-400 spectrometer
operating at a l3C frequency of 100.62 MHz. The functional groups of modified PEEK and PEEK grafted
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CFs were identified by a Fourier transform infrared (FT-IR) spectrometer (Nicolet 8700, USA) using
powder-pressed KBr disks in wave numbers ranging from 400 cm−1 to 4000 cm−1. Thermogravimetric
analysis (TGA) was performed under air atmosphere using a TGA Q5000 IR (TA Instruments-Waters
LLC, New Castle, DE, USA) with a heating rate of 10 ◦C/min from room temperature to 800 ◦C.
The contact angle analysis test (OCA40Micro, Germany) was used to determine the surface energies of
modified CF and the polar components of surface energies were calculated according to the Wilhelmy
method [19]. Five measurements were performed at different locations for each kind of CF.

Dynamic mechanical analysis (DMA) was carried out using a dynamic mechanical thermal
analyzer (TA Q800, New Castle, DE, USA) under a three-point bending mode. The samples were
tested at a frequency of 1.0 Hz from 30 ◦C to 290 ◦C, at a heating rate of 10 ◦C/min. Interlaminar shear
strength (ILSS) of composites were carried out on a universal testing machine (LABSANS LD26.105,
China) according to ASTM D7264. Five parallel measurements were conducted and averaged for each
final result. The standard deviation was indicated by error bars.

4. Results and Discussion

4.1. Surface Morphologies of Modified CFs

As shown in Figure 3, PEEK-NH2 were distributed on the CF surface, and the amount of
amine-PEEK depended on the degree of amination, confirming that the grafting of PEEK-NH2 increases
with the increasing degree of amination. For PEEK-NH2-4@CF, the fiber uniformly wrapped by
particles of PEEK (illustrated by arrows) indicated that PEEK-NH2 was chemically grafted onto CFs.
It can be seen in Figure 3D, that a layer of uniform PEEK particles on the fiber surface was generated,
which served as a bridge to connect CF and the PEEK matrix at the composite interface region, and
consequently enhanced the interfacial adhesion between CFs and the matrix.
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4.2. Surface Energies of Modified CFs

Polar liquid (water) and non-polar liquid (glycerol) was used to determine the dispersive (γd)
and polar (γp) components of surface energy according to the Wilhelmy method [19]. Surface polar
functional groups of CFs enhanced the polar component, while the topography of fiber dominated the
dispersive component. Therefore, the enhanced polar component of surface energy can be interpreted
as many polar amino groups induced onto the surface of grafted CFs. It was found that an increase
in total surface energy and its polar component appears to be due to the increase in the percentage
of surface polar functional groups (NH2). In fact, an approximate linear relationship can be obtained
between the polar component of the surface energy, and polar functional groups on the surface of
CFs (see Table 2). The improved dispersive component of different CF surfaces can be ascribed to
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increased fiber surface roughness caused by the polymer sizing agent containing PEEK-NH2 which
was grafted on the fiber surface. The improvement of carbon fiber surface energy effectively improved
the interfacial bonding between fiber and polymer matrices.

Table 2. Surface energies of modified carbon fibers (CFs).

Samples Contact Angle (◦)
γd (mJm−2) γp (mJm−2) γ (mJm−2)

Water Glycerol

Desized-CF 79.9 92.4 1.03 44.64 45.67
PEEK-NH2-1@CF 77 81 1.50 64.92 66.42
PEEK-NH2-2@CF 74 78.2 1.62 70.48 72.10
PEEK-NH2-3@CF 71 75.2 1.92 77.52 79.44
PEEK-NH2-4@CF 68 73 1.67 79.71 81.38

4.3. Thermal Stability of Modified CFs

As shown in Figure 4, the initial degradation temperature of desized@CF was about 640 ◦C [20].
Meanwhile, there was a significant weight loss for CF grafted with PEEK-NH2 which showed two
distinct weight losses at 480 ◦C and 640 ◦C. It can be seen that with increasing amination degree the
thermal degradation continuously increased which was attributed to reactions with the main chain
and derivatives of the amino group. This could have affected the level of the improvement, especially
at high processing temperature. The results of the thermal analysis for all investigated samples are
summarized in Table 3. It is well-known that the amino group of PEEK can form interaction bonds
with basic groups in PEEK, thus, leading to the stabilization of the aromatic of the amino group to
some extent.
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Table 3. Thermal properties of modified CFs grafted with PEEK-NH2.

Sample T5 (◦C) Char Yield (%)

Desized-CF 700 68
PEEK-NH2-1@CF 674 59
PEEK-NH2-2@CF 670 57
PEEK-NH2-3@CF 647 54
PEEK-NH2-4@CF 568 46

T5: Temperature at 5% weight loss in air. Char yield (%): Residual weight at ~800 ◦C in air.
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4.4. The Surface Chemical Elemental Composition of CFs

4.4.1. NMR of Modified PEEK

The reaction of the functional polymer with -NO2 was investigated with NMR. The 13C NMR
spectrum of PEEK and PEEK-NO2 are given in Figure 5. The polymer backbone of PEEK peaks
resonated at 120.2, 132.5, 150.8, 160, and 193 ppm. These peaks shifted to lower chemical shifts in
the functional polymer (PEEK-NO2) compared with that of PEEK, and a new peak at 142.4 ppm was
observed, which was attributed to the –NO2 grafted onto the PEEK main chain [21].
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4.4.2. FTIR Analysis of Modified PEEK

Figure 6A shows the infrared spectra for PEEK and nitrated PEEK with different nitration degrees,
and the absorption bands observed at 1543 cm−1, and 1346 cm−1 relate to the unsymmetrical and
symmetrical stretching of the nitro group, respectively [21]. The appearance of a band at 3434 cm−1

related to N-H stretching, which increased with the increasing degree of nitration, and the peaks
at 928 cm−1 were assigned to C-N stretching. For PEEK-NH2, as shown in Figure 6B, the peaks at
3474 cm−1, 3374 cm−1, and 1651 cm−1 were attributed to N-H stretching, the peak at 1306.3 cm−1 was
attributed to C-N stretching, and the peak at 1534 cm−1 was attributed to N=N stretching and the
intensity of this group increased with amination degree increases [22]. All these changes indicated
that the nitro groups were reduced to amino groups. For activated CFs (Figure 6C), peaks observed
at 3439 cm−1, 1753 cm−1, and 1118 cm−1 were associated with stretching vibrations of -OH groups,
C=O groups, and -COOH groups, respectively. For the PEEK-NH2 grafted CFs, the disappearance
of the peak located at 1710 cm−1 verified the alteration of the molecular structure of the carboxylic
acid group [23]. The peak at 1531 cm−1 corresponded to the bending vibration of the N–H of amide,
indicating that PEEK-NH2 was grafted onto the fiber surface through covalent bonds [24].
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4.5. Mechanical Properties of Modified CFs

The typical stress-strain curves obtained from the ILSS tests of modified CF/PEEK composites
are presented in Figure 7A. There was a slight increase in the maximum load of the ILSS test with
the increasing amination degree of the modifier, and then it decreased when the amination degree
was further increased. The inset of Figure 7A shows the morphologies of failure modes observed
in the CF/PEEK laminates after ILSS tests were carried out. The fracture surfaces of specimen after
ILSS tests were delamination cracked, and located at the critical ply interface. ILSS of CF/PEEK
composites modified by PEEK-NH2 increased compared with that of the desized@CF composite as
shown in Figure 7B. The results suggest that the compatibilizer PEEK-NH2 influenced the mechanical
properties of CF/PEEK. For PEEK-NH2-1@CF and PEEK-NH2-2@CF, the amino groups were not
enough to be attached uniformly onto the CF surface, thus, the fiber surface was not totally covered by
the grafting material. Hence, ILSS showed only a slight improvement. For PEEK-NH2-3@CF, there
were enough active groups (e.g., NH2) in the PEEK. Therefore, the amino of PEEK-NH2 also had
the chemical reaction and intermolecular force of COOH groups of activated CFs, and thus, gave
uniform polymer grafting. Hence, improvement in ILSS for PEEK-NH2-3@CF reached a maximum,
i.e., 33.4%. In addition, the molecular backbone of PEEK-NH2 was similar to that of PEEK. Thus, PEEK
and PEEK-NH2 could have good physical compatibility. These results demonstrated a significantly
higher level of improvements than were reported in previous studies [15,25,26]. But compared with
our previous study [2], there was a limited level of improvement, which could be attributed to the
sensitivity of the amino group to high temperatures. On the other hand, when increasing the amination
degree, as in PEEK-NH2-4@CF, the ILSS tended to decrease due to lower thermal stability. Because of
the lower degradation temperature (Figure 4), the interfacial layer of this sample might have quickly
degraded and formed a weak interfacial layer during the processing of CF/PEEK composites at
high temperatures.



Materials 2019, 12, 778 8 of 11

Materials 2018, 11, x FOR PEER REVIEW  8 of 11 

 

have quickly degraded and formed a weak interfacial layer during the processing of CF/PEEK 215 
composites at high temperatures.  216 

 217 

Figure 7. (A) Stress–strain curves in interlaminar shear strength (ILSS) tests, (B) ILSS at different 218 
degrees of amination of PEEK. 219 

4.6. Dynamic Mechanical Analysis of Modified CFs 220 
The variation in the storage modulus (E') as a function of temperature for the PEEK-NH2 221 

modified composites is given in Figure 8. There was a clear increase in E' after modification of CFs 222 
with PEEK-NH2, and the maximum E' values were found for the PEEK-NH2-3@CF composite. This 223 
indicates that the CF/PEEK interaction adhesion improved due to the reaction between the amino 224 
groups of PEEK, and COOH groups of CF. That is to say, the compatibilizer PEEK-NH2 was likely to 225 
have a good effect on the interfacial adhesion between the PEEK matrix and CFs. However, due to 226 
the high processing temperature of CF/PEEK composites, PEEK-NH2 led to more degradation with 227 
an increased degree of amination, which was reflected in decreased storage modulus probably due 228 
to damage of the interfacial layer in CF/PEEK composites. 229 

The tanδ of the composites mainly depended on the interface between fiber and matrix. A good 230 
interface bore greater stress and less energy dissipation. However, composite materials with poor 231 
interfacial bonding tended to dissipate more energy showing a high magnitude of damping peak in 232 
comparison to a material with a strongly bonded interface. This shows that the peak value of tanδ in 233 
the modified composites with PEEK-NH2 was lower than that of CF/PEEK without PEEK-NH2. It was 234 
suggested that the interfacial compatibility of CF/PEEK composite with PEEK-NH2 was improved. 235 
However, the value of tanδ was affected by the degree of amination due to the high sensitivity of 236 
NH2 due to high temperature. 237 

 238 
Figure 8. (A) Storage modulus and (B) tan δ of PEEK-NH2 modified CF/PEEK composites. 239 

Figure 7. (A) Stress–strain curves in interlaminar shear strength (ILSS) tests, (B) ILSS at different
degrees of amination of PEEK.

4.6. Dynamic Mechanical Analysis of Modified CFs

The variation in the storage modulus (E’) as a function of temperature for the PEEK-NH2 modified
composites is given in Figure 8. There was a clear increase in E’ after modification of CFs with
PEEK-NH2, and the maximum E’ values were found for the PEEK-NH2-3@CF composite. This indicates
that the CF/PEEK interaction adhesion improved due to the reaction between the amino groups of
PEEK, and COOH groups of CF. That is to say, the compatibilizer PEEK-NH2 was likely to have
a good effect on the interfacial adhesion between the PEEK matrix and CFs. However, due to the
high processing temperature of CF/PEEK composites, PEEK-NH2 led to more degradation with an
increased degree of amination, which was reflected in decreased storage modulus probably due to
damage of the interfacial layer in CF/PEEK composites.

The tanδ of the composites mainly depended on the interface between fiber and matrix. A good
interface bore greater stress and less energy dissipation. However, composite materials with poor
interfacial bonding tended to dissipate more energy showing a high magnitude of damping peak in
comparison to a material with a strongly bonded interface. This shows that the peak value of tanδ in
the modified composites with PEEK-NH2 was lower than that of CF/PEEK without PEEK-NH2. It was
suggested that the interfacial compatibility of CF/PEEK composite with PEEK-NH2 was improved.
However, the value of tanδ was affected by the degree of amination due to the high sensitivity of NH2

due to high temperature.
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4.7. The Fractured Surface of the Modified Composite

The pulled out CF and the big crack in the interface of the desized CF/PEEK composite were
observed (see arrows in Figure 9Ai,ii). As shown in Figure 9Aiii, the debonding failure surfaces
presented a little matrix attached to the CF surface. These results indicated a poor interface between CF
and PEEK. The surface morphologies of PEEK-NH2-1@CF are shown in Figure 9Bi,ii. The pulled out
CFs in the modified CF/PEEK composite were not observed but a small crack was deflected. As shown
in Figure 9Biii, some PEEK resin detached from the CFs surface owing to the relatively weak adhesion
between CFs and PEEK resin. For PEEK-NH2-2@CF, the crack was reduced and there was no gap
between CF and the matrix (Figure 9Ci,ii). Furthermore, as shown in Figure 9Ciii, more PEEK resin was
attached in CFs compared with PEEK-NH2-1@CF, which indicated that the interface improved to some
extent. For PEEK-NH2-3@CF, it suggested that the fiber was broken together with the matrix during
the fracture, which further substantiates adhesion between PEEK and CF (Figure 9Di,ii). Besides; it is
found that more resins completely adhered on the surface of PEEK-NH2-3@CF (Figure 9Diii). It can
be inferred that the interfacial properties of PEEK-NH2-3@CF composites were improved with the
increased degree of amination, which is in good agreement with previous experimental results of ILSS.
The improvement can be attributed to the chemical bond between PEEK-NH2 and COOH in CF, thus,
building an interfacial layer on the surface of CF while improving wettability with the PEEK matrix.
Meanwhile, the compatibilizer also had good compatibility with the PEEK matrix.
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Figure 9. SEM images of fracture surface micrographs of CF-PEEK composites containing CF
with different modifications: (A) Desized@CF, (B) PEEK-NH2-1@CF, (C) PEEK-NH2-2@CF, and
(D) PEEK-NH2-3@CF.

5. Conclusions

In this work, a modified method based on the PEEK-NH2 matrix was investigated. The PEEK-NH2

was grafted onto CFs via chemical bonding. Effective improvement in the interfacial adhesion could
be achieved by forming a covalent bond between the amino group of PEEK and COOH of the
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activated CF. Although, PEEK-NH2 has good compatibility with PEEK, the study showed a limited
influence on improving interfacial adhesion, i.e., 33.4% for ILSS, probably due to the high sensitivity
of the amine group to high temperatures. Meanwhile, the compatibility effect of PEEK-NH2 in the
PEEK/CF composite was proved not only by the mechanical properties, but also by the storage
modulus and SEM observation of modified composites, since the properties of the CF/PEEK interface
were significantly enhanced. This approach may be applied to other thermoplastics that have lower
processing temperature to enhance their performance.
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