The Visible-Light-Driven Activity of Biochar-Doped TiO2 Photocatalysts in β-Blockers Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Preparation
2.2. Catalysts Characterization
2.3. Metoprolol and Propranolol Removal from Water
3. Results
3.1. Physicochemical Properties of the Photocatalysts
Surface Properties
3.2. Photocatalytic Oxidation of Met and Pro
3.2.1. Kinetics
3.2.2. Effect of Matrix Parameters
3.2.3. Toxicity
3.2.4. PALS Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbasi, Z.; Cseri, L.; Zhang, X.; Ladewig, B.P.; Wang, H. Metal-Organic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment. In Sustainable Nanoscale Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 163–194. ISBN 978-0-12-814681-1. [Google Scholar]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and Adsorption Capacities of Biochar for the Removal of Organic and Inorganic Pollutants from Industrial Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, N.A.; Ahmed, S.; Dhingra, A.; Singh, C.P.; Khan, S.U.; Mohammadi, A.A.; Changani, F.; Yousefi, M.; Alam, S.; et al. Application of Advanced Oxidation Processes Followed by Different Treatment Technologies for Hospital Wastewater Treatment. J. Clean. Prod. 2020, 269, 122411. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Mohammed, A.A.; Mutar, Z.H.; Abdullah, S.R.S.; Jasim, S.S.; Almansoory, A.F.; Ismail, N. ’Izzati Application of Phytotechnology in Alleviating Pharmaceuticals and Personal Care Products (PPCPs) in Wastewater: Source, Impacts, Treatment, Mechanisms, Fate, and SWOT Analysis. J. Clean. Prod. 2021, 319, 128584. [Google Scholar] [CrossRef]
- Arsand, J.B.; Dallegrave, A.; Jank, L.; Feijo, T.; Perin, M.; Hoff, R.B.; Arenzon, A.; Gomes, A.; Pizzolato, T.M. Spatial-Temporal Occurrence of Contaminants of Emerging Concern in Urban Rivers in Southern Brazil. Chemosphere 2023, 311, 136814. [Google Scholar] [CrossRef] [PubMed]
- Aranami, K.; Readman, J.W. Photolytic Degradation of Triclosan in Freshwater and Seawater. Chemosphere 2007, 66, 1052–1056. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Carballa, M.; Omil, F.; Ternes, T.; Lema, J.M. Fate of Pharmaceutical and Personal Care Products (PPCPs) during Anaerobic Digestion of Sewage Sludge. Water Res. 2007, 41, 2139–2150. [Google Scholar] [CrossRef]
- Ginja Teixeira, J.; Veiga, A.; Palace Carvalho, A.J.; Martins Teixeira, D. Electro-Oxidation of Carbamazepine Metabolites: Characterization and Influence in the Voltammetric Determination of the Parent Drug. Electrochim. Acta 2013, 108, 51–65. [Google Scholar] [CrossRef]
- Kharel, S.; Stapf, M.; Miehe, U.; Ekblad, M.; Cimbritz, M.; Falås, P.; Nilsson, J.; Sehlén, R.; Bregendahl, J.; Bester, K. Removal of Pharmaceutical Metabolites in Wastewater Ozonation Including Their Fate in Different Post-Treatments. Sci. Total Environ. 2021, 759, 143989. [Google Scholar] [CrossRef] [PubMed]
- Bayati, M.; Ho, T.L.; Vu, D.C.; Wang, F.; Rogers, E.; Cuvellier, C.; Huebotter, S.; Inniss, E.C.; Udawatta, R.; Jose, S.; et al. Assessing the Efficiency of Constructed Wetlands in Removing PPCPs from Treated Wastewater and Mitigating the Ecotoxicological Impacts. Int. J. Hyg. Environ. Health 2021, 231, 113664. [Google Scholar] [CrossRef]
- Leyva, E.; Moctezuma, E.; López, M.; Baines, K.M.; Zermeño, B. Photocatalytic Degradation of β-Blockers in TiO2 with Metoprolol as Model Compound. Intermediates and Total Reaction Mechanism. Catal. Today 2019, 323, 14–25. [Google Scholar] [CrossRef]
- Yi, M.; Lou, J.; Zhu, W.; Li, D.; Yu, P.; Lu, H. Mechanism of β-Blocker Biodegradation by Wastewater Microorganisms. J. Hazard. Mater. 2023, 444, 130338. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Hambly, A.C.; Zhao, D.; Wang, G.; Tang, K.; Andersen, H.R. Peroxymonosulfate Activation by Suspended Biogenic Manganese Oxides for Polishing Micropollutants in Wastewater Effluent. Sep. Purif. Technol. 2023, 306, 122501. [Google Scholar] [CrossRef]
- Jafarinejad, S. Cost-Effective Catalytic Materials for AOP Treatment Units. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L.A., Vicente, M.Á., Eds.; Springer International Publishing: Cham, Switzerlan, 2017; Volume 67, pp. 309–343. ISBN 978-3-319-76881-6. [Google Scholar]
- Hojamberdiev, M.; Kawashima, K.; Hisatomi, T.; Katayama, M.; Hasegawa, M.; Domen, K.; Teshima, K. Distinguishing the Effects of Altered Morphology and Size on the Visible Light-Induced Water Oxidation Activity and Photoelectrochemical Performance of BaTaO 2 N Crystal Structures. Faraday Discuss. 2019, 215, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, Y.K.; Imam, E.; Ramadan, A.R. TiO2 Water-Bell Photoreactor for Wastewater Treatment. Sol. Energy 2018, 170, 323–335. [Google Scholar] [CrossRef]
- Hammad, M.; Angel, S.; Al-Kamal, A.K.; Asghar, A.; Said Amin, A.; Kräenbring, M.-A.; Wiedemann, H.T.A.; Vinayakumar, V.; Yusuf Ali, M.; Fortugno, P.; et al. Synthesis of Novel LaCoO3/Graphene Catalysts as Highly Efficient Peroxymonosulfate Activator for the Degradation of Organic Pollutants. Chem. Eng. J. 2023, 454, 139900. [Google Scholar] [CrossRef]
- Buda, W.; Czech, B. Preparation and Characterization of C,N-Codoped TiO 2 Photocatalyst for the Degradation of Diclofenac from Wastewater. Water Sci. Technol. 2013, 68, 1322. [Google Scholar] [CrossRef]
- Da Dalt, S.; Alves, A.K.; Bergmann, C.P. Preparation and Performance of TiO2-ZnO/CNT Hetero-Nanostructures Applied to Photodegradation of Organic Dye. Mater. Res. 2016, 19, 1372–1375. [Google Scholar] [CrossRef] [Green Version]
- Leary, R.; Westwood, A. Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Ma, S.; Gu, J.; Han, Y.; Gao, Y.; Zong, Y.; Ye, Z.; Xue, J. Facile Fabrication of C–TiO2 Nanocomposites with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Omega 2019, 4, 21063–21071. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, J.; Chen, T.; Sun, J.; Ma, X.; Wang, Y.; Wang, J.; Xie, Z. Preparation of TiO2-Modified Biochar and Its Characteristics of Photo-Catalysis Degradation for Enrofloxacin. Sci. Rep. 2020, 10, 6588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.J.; Hameed, B.H. Insight into the Co-Pyrolysis of Different Blended Feedstocks to Biochar for the Adsorption of Organic and Inorganic Pollutants: A Review. J. Clean. Prod. 2020, 265, 121762. [Google Scholar] [CrossRef]
- Czech, B.; Jośko, I.; Oleszczuk, P. Ecotoxicological Evaluation of Selected Pharmaceuticals to Vibrio Fischeri and Daphnia Magna before and after Photooxidation Process. Ecotoxicol. Environ. Saf. 2014, 104, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, P.; Ok, Y.S.; Oleszczuk, P. The Dark Side of Black Gold: Ecotoxicological Aspects of Biochar and Biochar-Amended Soils. J. Hazard. Mater. 2021, 403, 123833. [Google Scholar] [CrossRef] [PubMed]
- Czech, B.; Buda, W.; Pasieczna-Patkowska, S.; Oleszczuk, P. MWCNT–TiO2–SiO2 Nanocomposites Possessing the Photocatalytic Activity in UVA and UVC. Appl. Catal. B Environ. 2015, 162, 564–572. [Google Scholar] [CrossRef]
- Kansy, J. Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 374, 235–244. [Google Scholar] [CrossRef]
- Tao, S.J. Positronium Annihilation in Molecular Substances. J. Chem. Phys. 1972, 56, 5499–5510. [Google Scholar] [CrossRef]
- Eldrup, M.; Lightbody, D.; Sherwood, J.N. The Temperature Dependence of Positron Lifetimes in Solid Pivalic Acid. Chem. Phys. 1981, 63, 51–58. [Google Scholar] [CrossRef]
- Ferrell, R.A. Long Lifetime of Positronium in Liquid Helium. Phys. Rev. 1957, 108, 167–168. [Google Scholar] [CrossRef]
- Hirade, T. Positronium Formation in H2O, D2O and HDO Mixture. Mater. Sci. Forum 1994, 175–178, 675–678. [Google Scholar] [CrossRef]
- Stepanov, S.V.; Byakov, V.M.; Duplâtre, G.; Zvezhinskiy, D.S.; Lomachuk, Y.V. Positronium Formation in a Liquid Phase: Influence of Intratrack Reactions and Temperature. Phys. Status Solidi (C) 2009, 6, 2476–2481. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth☆. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef] [PubMed]
- SDI Microtox Manual; Microbics Corporation: Carlsbad, CA, USA, 1992.
- Avilés-García, O.; Espino-Valencia, J.; Mendoza-Zepeda, A.; Donkor, K.; Brewer, S.; Romero, R.; Natividad, R. Removal of Metoprolol by Means of Photo-Oxidation Processes. Catal. Today 2022, 397–399, 562–573. [Google Scholar] [CrossRef]
- Cavalcante, R.P.; Dantas, R.F.; Bayarri, B.; González, O.; Giménez, J.; Esplugas, S.; Machulek, A. Photocatalytic Mechanism of Metoprolol Oxidation by Photocatalysts TiO2 and TiO2 Doped with 5% B: Primary Active Species and Intermediates. Appl. Catal. B Environ. 2016, 194, 111–122. [Google Scholar] [CrossRef]
- De la Cruz, N.; Dantas, R.F.; Giménez, J.; Esplugas, S. Photolysis and TiO2 Photocatalysis of the Pharmaceutical Propranolol: Solar and Artificial Light. Appl. Catal. B Environ. 2013, 130–131, 249–256. [Google Scholar] [CrossRef]
- Giordani, T.; Dose, J.; Kuskoski, Y.; Schultz, J.; Mangrich, A.S.; de Mello, J.M.M.; Silva, L.L.; Zeferino, R.C.F.; Zanetti, M.; Fiori, M.A.; et al. Photocatalytic Degradation of Propranolol Hydrochloride Using Nd–TiO2 Nanoparticles under UV and Visible Light. J. Mater. Res. 2021, 36, 1584–1599. [Google Scholar] [CrossRef]
- Ponkshe, A.; Thakur, P. Solar Light–Driven Photocatalytic Degradation and Mineralization of Beta Blockers Propranolol and Atenolol by Carbon Dot/TiO2 Composite. Environ. Sci. Pollut. Res. 2022, 29, 15614–15630. [Google Scholar] [CrossRef]
- Krzyszczak, A.; Dybowski, M.P.; Kończak, M.; Czech, B. Low Bioavailability of Derivatives of Polycyclic Aromatic Hydrocarbons in Biochar Obtained from Different Feedstock. Environ. Res. 2022, 214, 113787. [Google Scholar] [CrossRef]
- Larciprete, R.; Gardonio, S.; Petaccia, L.; Lizzit, S. Atomic Oxygen Functionalization of Double Walled C Nanotubes. Carbon 2009, 47, 2579–2589. [Google Scholar] [CrossRef]
- Misra, A.; Tyagi, P.K.; Rai, P.; Misra, D.S. FTIR Spectroscopy of Multiwalled Carbon Nanotubes: A Simple Approachto Study the Nitrogen Doping. J. Nanosci. Nanotechnol. 2007, 7, 1820–1823. [Google Scholar] [CrossRef]
- Armaković, S.J.; Armaković, S.; Finčur, N.L.; Šibul, F.; Vione, D.; Šetrajčić, J.P.; Abramović, B.F. Influence of Electron Acceptors on the Kinetics of Metoprolol Photocatalytic Degradation in TiO 2 Suspension. A Combined Experimental and Theoretical Study. RSC Adv. 2015, 5, 54589–54604. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G. Recent Progress in Biochar-Supported Photocatalysts: Synthesis, Role of Biochar, and Applications. RSC Adv. 2018, 8, 14237–14248. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Phal, N.; Oh, J.; Chu, K.H.; Jang, M.; Yoon, Y. Removal of Humic and Tannic Acids by Adsorption–Coagulation Combined Systems with Activated Biochar. J. Hazard. Mater. 2015, 300, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical Scavenging and Antioxidant Activity of Tannic Acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, M.; Ribeiro, R.S.; Guerra-Rodríguez, S.; Rodríguez-Chueca, J.; Rodríguez, E.; Silva, A.M.T.; Ðolic, M.; Rita Lado Ribeiro, A. Spirulina-Based Carbon Bio-Sorbent for the Efficient Removal of Metoprolol, Diclofenac and Other Micropollutants from Wastewater. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100720. [Google Scholar] [CrossRef]
- Stepanov, P.S.; Selim, F.A.; Stepanov, S.V.; Bokov, A.V.; Ilyukhina, O.V.; Duplâtre, G.; Byakov, V.M. Interaction of Positronium with Dissolved Oxygen in Liquids. Phys. Chem. Chem. Phys. 2020, 22, 5123–5131. [Google Scholar] [CrossRef] [PubMed]
- Kotera, K.; Saito, T.; Yamanaka, T. Measurement of Positron Lifetime to Probe the Mixed Molecular States of Liquid Water. Phys. Lett. A 2005, 345, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Zgardzińska, B.; Goworek, T. Search for Premelting at the End of Positron Track in Ice. Phys. Lett. A 2014, 378, 915–917. [Google Scholar] [CrossRef]
Photocatalysts | SBET [m2/g] | Vp [cm3/g] | D [nm] | C 1 [%] | O 1 [%] | Ti 1 [%] |
---|---|---|---|---|---|---|
TB1 | 192 | 0.0268 | 2.60 | 2.8 | 33.4 | 63.3 |
TB2 | 192 | 0.0483 | 2.54 | 10.1 | 47.4 | 41.9 |
TB3 | 192 | 0.0172 | 2.65 | 6.4 | 43.1 | 49.6 |
Β-Blocker | Material | Efficiency | Reference |
---|---|---|---|
Met | Biochar-TiO2 | 60%, Vis | Our studies |
BioMnOx | 80%, PMS | [14] | |
LaCoO3/graphene | 100%, PMS | [18] | |
TiO2 | 60%, UV | [36] | |
B-TiO2 | 90%, UV | [37] | |
Pro | Biochar-TiO2 | 70%, Vis | Our studies |
TiO2 | 70%, solar | [38] | |
Nd–TiO2 | 95%, UV | [39] | |
carbon dot/TiO2 | 99%, UV-Vis | [40] |
Photocatalysts | k1 [min−1] ×10−3 | Met T1/2 [min] | R2 [-] | k1 [min−1] ×10−3 | Pro T1/2 [min] | R2 [-] |
---|---|---|---|---|---|---|
Photolysis | 4.05 | 171 | 0.9686 | 4.38 | 158 | 0.9813 |
TB1 | 12.33 | 56 | 0.9372 | 20.27 | 34 | 0.9726 |
TB2 | 12.42 | 56 | 0.7073 | 20.54 | 34 | 0.9539 |
TB3 | 8.51 | 81 | 0.9762 | 19.75 | 35 | 0.9302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, A.; Zgardzińska, B.; Osipiuk, K.; Jędruchniewicz, K.; Tyszczuk-Rotko, K.; Goździuk, M.; Wang, H.; Czech, B. The Visible-Light-Driven Activity of Biochar-Doped TiO2 Photocatalysts in β-Blockers Removal from Water. Materials 2023, 16, 1094. https://doi.org/10.3390/ma16031094
Kowalczyk A, Zgardzińska B, Osipiuk K, Jędruchniewicz K, Tyszczuk-Rotko K, Goździuk M, Wang H, Czech B. The Visible-Light-Driven Activity of Biochar-Doped TiO2 Photocatalysts in β-Blockers Removal from Water. Materials. 2023; 16(3):1094. https://doi.org/10.3390/ma16031094
Chicago/Turabian StyleKowalczyk, Agata, Bożena Zgardzińska, Karol Osipiuk, Katarzyna Jędruchniewicz, Katarzyna Tyszczuk-Rotko, Magdalena Goździuk, Haitao Wang, and Bożena Czech. 2023. "The Visible-Light-Driven Activity of Biochar-Doped TiO2 Photocatalysts in β-Blockers Removal from Water" Materials 16, no. 3: 1094. https://doi.org/10.3390/ma16031094
APA StyleKowalczyk, A., Zgardzińska, B., Osipiuk, K., Jędruchniewicz, K., Tyszczuk-Rotko, K., Goździuk, M., Wang, H., & Czech, B. (2023). The Visible-Light-Driven Activity of Biochar-Doped TiO2 Photocatalysts in β-Blockers Removal from Water. Materials, 16(3), 1094. https://doi.org/10.3390/ma16031094