Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Formation and Crystal Structure
3.2. Microstructural Properties
3.3. Dielectric Properties
3.4. P-E Loops and Energy Storage Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh–Energy Density Lead-Free Dielectric Films via Polymorphic Nanodomain Design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.-Z.; Yuan, Q.; Wang, Q.; Wang, H. Multiscale Structural Engineering of Dielectric Ceramics for Energy Storage Applications: From Bulk to Thin Films. Nanoscale 2020, 12, 17165–17184. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yao, F.-Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q. High-Temperature Dielectric Materials for Electrical Energy Storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Zhao, P.; Cai, Z.; Chen, L.; Wu, L.; Huan, Y.; Guo, L.; Li, L.; Wang, H.; Wang, X. Ultra-High Energy Storage Performance in Lead-Free Multilayer Ceramic Capacitors via a Multiscale Optimization Strategy. Energy Env. Sci. 2020, 13, 4882–4890. [Google Scholar] [CrossRef]
- Hu, Y.; Rabelo, M.; Kim, T.; Cho, J.; Choi, J.; Fan, X.; Yi, J. Ferroelectricity Based Memory Devices: New-Generation of Materials and Applications. Trans. Electr. Electron. Mater. 2023, 24, 271–278. [Google Scholar] [CrossRef]
- Kumar, N.; Ionin, A.; Ansell, T.; Kwon, S.; Hackenberger, W.; Cann, D. Multilayer Ceramic Capacitors Based on Relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for Temperature Stable and High Energy Density Capacitor Applications. Appl. Phys. Lett. 2015, 106, 252901. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Zhu, L.-F.; Zhao, L.; Yan, Y.; Leng, H.; Li, X.; Cheng, L.-Q.; Xiong, X.; Priya, S. Composition and Strain Engineered AgNbO3-Based Multilayer Capacitors for Ultra-High Energy Storage Capacity. J. Mater. Chem. A Mater. 2021, 9, 9655–9664. [Google Scholar] [CrossRef]
- Cao, W.; Lin, R.; Chen, P.; Li, F.; Ge, B.; Song, D.; Zhang, J.; Cheng, Z.; Wang, C. Phase and Band Structure Engineering via Linear Additive in NBT-ST for Excellent Energy Storage Performance with Superior Thermal Stability. ACS Appl. Mater. Interfaces 2022, 14, 54051–54062. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Q.; Gao, J.; Zhang, S.; Li, J. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance. Adv. Mater. 2017, 29, 1701824. [Google Scholar] [CrossRef]
- Zheng, T.; Yu, Y.; Lei, H.; Li, F.; Zhang, S.; Zhu, J.; Wu, J. Compositionally Graded KNN-Based Multilayer Composite with Excellent Piezoelectric Temperature Stability. Adv. Mater. 2022, 34, 2109175. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Tian, Y.; Zhu, Q.; Bian, J.; Jin, L.; Du, H.; Alikin, D.O.; Shur, V.Y.; Feng, Y.; Xu, Z.; et al. Achieve Ultrahigh Energy Storage Performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 Relaxor Ferroelectric Ceramics via Nano-Scale Polarization Mismatch and Reconstruction. Nano Energy 2020, 67, 104264. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R. Linear-like Lead-Free Relaxor Antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with Giant Energy-Storage Density/Efficiency and Super Stability against Temperature and Frequency. J. Mater. Chem. A Mater. 2019, 7, 3971–3978. [Google Scholar] [CrossRef]
- Wang, D.; Fan, Z.; Zhou, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q.; Tan, X.; Reaney, I.M. Bismuth Ferrite-Based Lead-Free Ceramics and Multilayers with High Recoverable Energy Density. J. Mater. Chem. A Mater. 2018, 6, 4133–4144. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, H.; Wu, L.; Chen, L.; Cai, Z.; Li, L.; Wang, X. High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications. Adv. Energy Mater. 2019, 9, 1803048. [Google Scholar] [CrossRef]
- Inam, F.; Yan, H.; Jayaseelan, D.D.; Peijs, T.; Reece, M.J. Electrically Conductive Alumina–Carbon Nanocomposites Prepared by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2010, 30, 153–157. [Google Scholar] [CrossRef]
- Lu, D.-Y.; Yin, S.; Cui, S.-Z. A Fine-Grained and Low-Loss X8R (Ba1−xDyx)(Ti1ࢤx/2Cax/2)O3 Ceramic. J. Alloys Compd. 2018, 762, 282–288. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Zhang, S.; Wang, Z.; Shi, Y.; Hao, H.; Cao, M.; Yao, Z.; Yu, Z. Effect of Grain Size on the Energy Storage Properties of (Ba0.4Sr0.6)TiO3 Paraelectric Ceramics. J. Eur. Ceram. Soc. 2014, 34, 1209–1217. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cho, K.H.; Nam, H.-D. Grain Size and Temperature Dependence of Electrical Breakdown in BaTiO3 Ceramic. Ferroelectrics 2006, 334, 165–169. [Google Scholar] [CrossRef]
- Su, X.; Riggs, B.C.; Tomozawa, M.; Nelson, J.K.; Chrisey, D.B. Preparation of BaTiO3 /Low Melting Glass Core–Shell Nanoparticles for Energy Storage Capacitor Applications. J. Mater. Chem. A 2014, 2, 18087–18096. [Google Scholar] [CrossRef]
- Meng, L.; Zheng, L.; Cheng, L.; Li, G.; Huang, L.; Gu, Y.; Zhang, F. Synthesis of Novel Core-Shell Nanocomposites for Fabricating High Breakdown Voltage ZnO Varistors. J. Mater. Chem. 2011, 21, 11418. [Google Scholar] [CrossRef]
- Shi, L.N.; Ren, Z.H.; Jain, A.; Jin, R.H.; Jiang, S.S.; Zhou, H.Z.; Chen, F.G.; Wang, Y.G. Enhanced Energy Storage Performance Achieved in Na0.5Bi0.5TiO3–Sr0.7Bi0.2TiO3 Ceramics via Domain Structure and Bandgap Width Tuning. Ceram. Int. 2023, 49, 12822–12831. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Zhang, X.; Fan, Z.; Yang, F.; Feteira, A.; Zhou, D.; Sinclair, D.C.; Ma, T.; Tan, X.; et al. Ultrahigh Energy Storage Density Lead-Free Multilayers by Controlled Electrical Homogeneity. Energy Environ. Sci. 2019, 12, 582–588. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, G.; Yao, F.-Z.; Cheng, S.-D.; Wang, Y.; Ma, R.; Mi, S.-B.; Gu, M.; Wang, K.; Li, J.-F.; et al. Simultaneously Achieved Temperature-Insensitive High Energy Density and Efficiency in Domain Engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 Lead-Free Relaxor Ferroelectrics. Nano Energy 2018, 52, 203–210. [Google Scholar] [CrossRef]
- Asbani, B.; Gagou, Y.; Ben Moumen, S.; Dellis, J.-L.; Lahmar, A.; Amjoud, M.; Mezzane, D.; El Marssi, M.; Rozic, B.; Kutnjak, Z. Large Electrocaloric Responsivity and Energy Storage Response in the Lead-Free Ba(GexTi1−x)O3 Ceramics. Materials 2022, 15, 5227. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, Y.; Lv, X.; Wu, J. Ultrahigh Energy-Storage Potential under Low Electric Field in Bismuth Sodium Titanate-Based Perovskite Ferroelectrics. J. Mater. Chem. A Mater. 2018, 6, 9823–9832. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, H.; Yang, H.; Fan, P.; Samart, C.; Takesue, N.; Tan, H. SPS-Prepared High-Entropy (Bi0.2Na0.2Sr0.2Ba0.2Ca0.2)TiO3 Lead-Free Relaxor-Ferroelectric Ceramics with High Energy Storage Density. Crystals 2023, 13, 445. [Google Scholar] [CrossRef]
- Jiang, Y.; Niu, X.; Liang, W.; Jian, X.; Shi, H.; Li, F.; Zhang, Y.; Wang, T.; Gong, W.; Zhao, X.; et al. Enhanced Energy Storage Performance in Na0.5Bi0.5TiO3-Based Relaxor Ferroelectric Ceramics via Compositional Tailoring. Materials 2022, 15, 5881. [Google Scholar] [CrossRef]
- Pattipaka, S.; Choi, H.; Lim, Y.; Park, K.-I.; Chung, K.; Hwang, G.-T. Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering. Materials 2023, 16, 4912. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B.; Li, Y.; Hall, D.A. Enhancement of Nonlinear Dielectric Properties in BiFeO3–BaTiO3 Ceramics by Nb-Doping. Materials 2022, 15, 2872. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, T.; Lang, R.; Tan, Z.; Xing, J.; Zhu, J. Achieving Outstanding Temperature Stability in KNN-Based Lead-Free Ceramics for Energy Storage Behavior. J. Eur. Ceram. Soc. 2023, 43, 2442–2451. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Qu, S.; Hou, Y.; Ma, H.; Wang, J.; Wang, J.; Wei, X.; Xu, Z. Significantly Enhanced Recoverable Energy Storage Density in Potassium–Sodium Niobate-Based Lead Free Ceramics. J. Mater. Chem. A Mater. 2016, 4, 13778–13785. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Sun, J.; Zhou, M.; Zhou, H. Novel Lead-Free Ceramic Capacitors with High Energy Density and Fast Discharge Performance. Ceram. Int. 2020, 46, 3426–3432. [Google Scholar] [CrossRef]
- Hu, D.; Pan, Z.; Tan, X.; Yang, F.; Ding, J.; Zhang, X.; Li, P.; Liu, J.; Zhai, J.; Pan, H. Optimization the Energy Density and Efficiency of BaTiO3-Based Ceramics for Capacitor Applications. Chem. Eng. J. 2021, 409, 127375. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Zhao, Q.; Li, L. Improved Energy Storage Properties of Fine-Crystalline BaTiO3 Ceramics by Coating Powders with Al2O3 and SiO2. J. Am. Ceram. Soc. 2015, 98, 2641–2646. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wu, Y.J.; Qiu, W.J.; Li, J.; Chen, X.M. Enhanced Energy Storage Density of Ba0.4Sr0.6TiO3–MgO Composite Prepared by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015, 35, 1469–1476. [Google Scholar] [CrossRef]
- Zhou, L.; Vilarinho, P.M.; Baptista, J.L. Dependence of the Structural and Dielectric Properties of Ba1-XSrxTiO3 Ceramic Solid Solutions on Raw Material Processing. J. Eur. Ceram. Soc. 1999, 19, 2015–2020. [Google Scholar] [CrossRef]
- Kovbasiuk, T.M.; Duriagina, Z.A.; Mierzwinski, D.; Kulyk, V.V. Thermophysical Properties of Glass-Ceramic Coatings of PbO–ZnO–B2O3 System Doped with Al2O3, SiO2, and BaO Oxides. Metallofiz. Noveishie Tekhnol. 2021, 43, 1313–1323. [Google Scholar] [CrossRef]
- Moussi, R.; Bougoffa, A.; Trabelsi, A.; Dhahri, E.; Graça, M.P.F.; Valente, M.A.; Barille, R.; Rguiti, M. Investigation of the Effect of Sr-Substitution on the Structural, Morphological, Dielectric, and Energy Storage Properties of BaTiO3-Based Perovskite Ceramics. Inorg. Chem. Commun. 2022, 137, 109225. [Google Scholar] [CrossRef]
- Batllo, F.; Duverger, E.; Jules, J.-C.; Niepce, J.-C.; Jannot, B.; Maglione, M. Dielectric and E.P.R. Studies of Mn-Doped Barium Titanate. Ferroelectrics 1990, 109, 113–118. [Google Scholar] [CrossRef]
- Morrison, F.D.; Sinclair, D.C.; West, A.R. Doping Mechanisms and Electrical Properties of La-Doped BaTiO3 Ceramics. Int. J. Inorg. Mater. 2001, 3, 1205–1210. [Google Scholar] [CrossRef]
- Shaikh, A.S.; Vest, R.W. Defect Structure and Dielectric Properties of Nd2O3-Modified BaTiO3. J. Am. Ceram. Soc. 1986, 69, 689–694. [Google Scholar] [CrossRef]
- Jayanthi, S.; Kutty, T.R.N. Dielectric Properties of 3d Transition Metal Substituted BaTiO3 Ceramics Containing the Hexagonal Phase Formation. J. Mater. Sci. Mater. Electron. 2008, 19, 615–626. [Google Scholar] [CrossRef]
- Wang, X.; Gu, M.; Yang, B.; Zhu, S.; Cao, W. Hall Effect and Dielectric Properties of Mn-Doped Barium Titanate. Microelectron. Eng. 2003, 66, 855–859. [Google Scholar] [CrossRef]
- Čeh, M.; Kolar, D. Solubility of Calcium Oxide in Barium Titanate. Mater. Res. Bull. 1994, 29, 269–275. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, B.; Liu, Y.; Zhou, Y.; Wu, Q.; Zhao, S. Capturing Carriers and Driving Depolarization by Defect Engineering for Dielectric Energy Storage. ACS Appl. Mater. Interfaces 2022, 14, 6547–6559. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, J.; Lu, D.; Zheng, W.; Hu, C. Structural Evolution and Dielectric Properties of Nd and Mn Co-Doped BaTiO3 Ceramics. J. Alloys Compd. 2018, 760, 31–41. [Google Scholar] [CrossRef]
- Rini, E.G.; Paul, A.; Nasir, M.; Amin, R.; Gupta, M.K.; Mittal, R.; Sen, S. Correlation of Octahedral Distortion with Vibrational and Electronic Properties of LaFe1−xTixO3 Nanoparticles. J. Alloys Compd. 2020, 830, 154594. [Google Scholar] [CrossRef]
- Jo, S.K.; Park, J.S.; Han, Y.H. Effects of Multi-Doping of Rare-Earth Oxides on the Microstructure and Dielectric Properties of BaTiO3. J. Alloys Compd. 2010, 501, 259–264. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Wu, B.; Wu, J. Multifunctional BaTiO3-Based Relaxor Ferroelectrics toward Excellent Energy Storage Performance and Electrostrictive Strain Benefiting from Crossover Region. ACS Appl. Mater. Interfaces 2020, 12, 23885–23895. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Z.; Tian, Y.; Wang, G.; Wang, W.; Yang, M.; Wang, X.; Zhang, F.; Pu, Y. Progress, Outlook, and Challenges in Lead-Free Energy-Storage Ferroelectrics. Adv. Electron. Mater. 2020, 6, 1900698. [Google Scholar] [CrossRef]
- Cha, S.H.; Han, Y.H. Effects of Mn Doping on Dielectric Properties of Mg-Doped BaTiO3. J. Appl. Phys. 2006, 100, 104102. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-Orientation-Engineered Multilayer Ceramic Capacitors for Energy Storage Applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef]
- Ko, Y.-J.; Han, M.H.; Lim, C.; Yu, S.-H.; Choi, C.H.; Min, B.K.; Choi, J.-Y.; Lee, W.H.; Oh, H.-S. Unveiling the Role of Ni in Ru-Ni Oxide for Oxygen Evolution: Lattice Oxygen Participation Enhanced by Structural Distortion. J. Energy Chem. 2023, 77, 54–61. [Google Scholar] [CrossRef]
- Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S.C.I.; Shen, Y.; et al. Oxygen Vacancies Promoting Photoelectrochemical Performance of In2O3 Nanocubes. Sci. Rep. 2013, 3, 1021. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Y.; Zhang, H.; Zhang, F.; Xue, Y.; Chang, A. Resistance-Temperature Characteristics of a New High-Temperature Thermistor Ceramics of Mn-Doping Ba–Ca–Zr–Ti–O System. J. Mater. Sci. Mater. Electron. 2021, 32, 25094–25107. [Google Scholar] [CrossRef]
Composition | Lattice Parameters (Å) | V (Å3) | Phase Fraction (%) | χ2 | |
---|---|---|---|---|---|
Tetragonal (P4 mm) | Triclinic (P1) | ||||
x = 0 and y = 0 | a = b = 3.97377 ± 0.00007 c = 3.98820 ± 0.00023 α = β = γ = 90° | a = 9.74235 ± 0.00045 b = 10.06442 ± 0.00025 c = 10.13491 ± 0.00020 α = 91.43°, β = 91.31° and γ = 96.38° | VTetra = 62.977 ± 0.004 VTri = 986.928 ± 0.055 | Tetra = 94.41 Tri = 5.59 | 1.95 |
x = 0.005 and y = 0 | a = b = 3.97989 ± 0.00022 c = 3.94835 ± 0.00064 α = β = γ = 90° | a = 9.71450 ± 0.00034 b = 10.045162 ± 0.00022 c = 10.12407 ± 0.00022 α = 91.41°, β = 91.22° and γ = 96.44° | VTetra = 62.510 ± 0.011 VTri = 981.114 ± 0.046 | Tetra = 92.92 Tri = 7.08 | 2.67 |
x = 0.005 and y = 0.0025 | a = b = 3.97339 ± 0.00017 c = 3.97732 ± 0.00025 α = β = γ = 90° | a = 9.72015 ± 0.00035 b = 10.06498 ± 0.00026 c = 10.13280 ± 0.00017 α = 91.46°, β = 91.28° and γ = 96.36° | VTetra = 62.793± 0.005 VTri = 984.566± 0.047 | Tetra = 87.73 Tri = 12.27 | 2.05 |
x = 0.005 and y = 0.005 | A = b = 3.97485 ± 0.00016 C = 3.96880 ± 0.00032 A = β = γ = 90° | a =9.71171±0.00039 b = 10.06801±0.00023 c = 10.13123±0.00022 α = 91.46°, β = 91.26° and γ = 96.38° | VTetra = 62.705± 0.006 VTri = 983.839± 0.050 | Tetra = 94.03 Tri = 5.97 | 2.02 |
x = 0.005 and y = 0.01 | a = b=3.97102 ± 0.00026 c = 3.97123 ± 0.00023 α = β = γ =90° | a = 9.70581 ± 0.00027 b = 10.06558 ± 0.00018 c = 10.12693 ± 0.00017 α = 91.45°, β = 91.25° and γ = 96.38° | VTetra = 62.622 ± 0.007 VTri = 982.577 ± 0.037 | Tetra = 95.16 Tri = 4.84 | 1.77 |
Composition | Pr (µC/cm2) | Pmax (µC/cm2) | ΔP = Pmax−Pr | Ec (kV/cm) | EBD (kV/cm) | Wrec (J/cm3) | η (%) |
---|---|---|---|---|---|---|---|
x = 0 and y = 0 | 2.22 | 11.2 | 8.98 | 5.94 | 60.4 | 0.15 | 48.5 |
x = 0.005 and y = 0 | 3.35 | 12.5 | 9.15 | 11.2 | 70.6 | 0.19 | 38.8 |
x = 0.005 and y = 0.0025 | 2.87 | 11.9 | 9.03 | 9.34 | 76.6 | 0.22 | 48.9 |
x = 0.005 and y = 0.005 | 1.57 | 11.4 | 9.83 | 5.45 | 90.5 | 0.3 | 69.4 |
x = 0.005 and y = 0.01 | 0.81 | 11.2 | 10.39 | 3.09 | 110.6 | 0.41 | 84.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Pattipaka, S.; Son, Y.H.; Bae, Y.M.; Park, J.H.; Jeong, C.K.; Lee, H.E.; Kim, S.-D.; Ryu, J.; Hwang, G.-T. Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering. Materials 2023, 16, 6753. https://doi.org/10.3390/ma16206753
Choi H, Pattipaka S, Son YH, Bae YM, Park JH, Jeong CK, Lee HE, Kim S-D, Ryu J, Hwang G-T. Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering. Materials. 2023; 16(20):6753. https://doi.org/10.3390/ma16206753
Chicago/Turabian StyleChoi, Hyunsu, Srinivas Pattipaka, Yong Hoon Son, Young Min Bae, Jung Hwan Park, Chang Kyu Jeong, Han Eol Lee, Sung-Dae Kim, Jungho Ryu, and Geon-Tae Hwang. 2023. "Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering" Materials 16, no. 20: 6753. https://doi.org/10.3390/ma16206753
APA StyleChoi, H., Pattipaka, S., Son, Y. H., Bae, Y. M., Park, J. H., Jeong, C. K., Lee, H. E., Kim, S.-D., Ryu, J., & Hwang, G.-T. (2023). Improved Energy Storage Density and Efficiency of Nd and Mn Co-Doped Ba0.7Sr0.3TiO3 Ceramic Capacitors Via Defect Dipole Engineering. Materials, 16(20), 6753. https://doi.org/10.3390/ma16206753