The Effect of Mixing Pressure in a High-Pressure Machine on Morphological and Physical Properties of Free-Rising Rigid Polyurethane Foams—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Synthesis Process
2.2. Sampling and Nomenclature
2.3. Synthesis Parameters
2.4. Apparent Density
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Scanning Electron Microscopy (SEM)
2.7. Friability
2.8. Determination of Compression Properties
2.9. Closed Cell Content
2.10. Viscosity Test
2.11. Water Absorption
3. Results
3.1. Synthesis Parameters
3.2. Effect of Mixing Pressure
3.3. Effect of Substrate Temperature
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seymour, R.B.; Mark, H.F.; Pauling, L.; Fisher, C.H.; Stahl, G.A.; Sperling, L.H.; Marvel, C.S.; Carraher, C.E. Otto Bayer Father of Polyurethanes. Pioneers Polym. Sci. 1989, 213–219. [Google Scholar] [CrossRef]
- Research, G.V. Polyurethane Market Size, Share & Trends Analysis Report by Product (Flexible Foam, Rigid Foam), by End Use (Construction, Electronics & Appliances), by Region (APAC, North America), and Segment Forecasts, 2021–2028; Grand View Research: San Francisco, CA, USA, 2021. [Google Scholar]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative Analysis of Building Insulation Material Properties and Performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Bote, S.D.; Kiziltas, A.; Scheper, I.; Mielewski, D.; Narayan, R. Biobased Flexible Polyurethane Foams Manufactured from Lactide-Based Polyester-Ether Polyols for Automotive Applications. J. Appl. Polym. Sci. 2021, 138, 1–15. [Google Scholar] [CrossRef]
- Groenewolt, M. Polyurethane Coatings: A Perfect Product Class for the Design of Modern Automotive Clearcoats. Polym. Int. 2019, 68, 843–847. [Google Scholar] [CrossRef]
- Morgan, A.B. Revisiting Flexible Polyurethane Foam Flammability in Furniture and Bedding in the United States. Fire Mater. 2021, 45, 68–80. [Google Scholar] [CrossRef]
- Griffin, M.; Castro, N.; Bas, O.; Saifzadeh, S.; Butler, P.; Hutmacher, D.W. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Eng. Part B Rev. 2020, 26, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Nguyen, T.; Padanilam, D.; Xu, C.; Saha, D.; Nguyen, K.T.; Hong, Y. Glutathione-Responsive Biodegradable Polyurethane Nanoparticles for Lung Cancer Treatment. J. Control. Release 2020, 321, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kamaci, M. Polyurethane-Based Hydrogels for Controlled Drug Delivery Applications. Eur. Polym. J. 2020, 123, 109444. [Google Scholar] [CrossRef]
- Sonnenschein, M.F.; Koonce, W. Polyurethanes, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 978-1-119-66947-0. [Google Scholar]
- Zhang, X.D.; Neff, R.; Macosko, C.W. Foam Stability in Flexible Polyurethane Foam Systems. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, FL, USA, 2004; pp. 139–171. ISBN 9780429211201. [Google Scholar]
- Kanner, B.; Decker, T.G. Urethane Foam Formation—Role of the Silicone Surfactant. J. Cell. Plast. 1969, 5, 32–39. [Google Scholar] [CrossRef]
- Brondi, C.; Di Maio, E.; Bertucelli, L.; Parenti, V.; Mosciatti, T. Competing Bubble Formation Mechanisms in Rigid Polyurethane Foaming. Polymer 2021, 228, 123877. [Google Scholar] [CrossRef]
- Suleman, S.; Khan, S.M.; Gull, N.; Aleem, W.; Shafiq, M.; Jamil, T. A Comprehensive Short Review on Polyurethane Foam. Int. J. Innov. Sci. Res. 2014, 12, 165–169. [Google Scholar]
- Kirpluks, M.; Cabulis, U.; Zeltins, V.; Stiebra, L.; Avots, A. Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat. Autex Res. J. 2014, 14, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Członka, S.; Strąkowska, A.; Kairytė, A. Effect of Walnut Shells and Silanized Walnut Shells on the Mechanical and Thermal Properties of Rigid Polyurethane Foams. Polym. Test. 2020, 87, 106534. [Google Scholar] [CrossRef]
- Trautmann, P.; Piesche, M. Experimental Investigations on the Mixing Behaviour of Impingement Mixers for Polyurethane Production. Chem. Eng. Technol. 2001, 24, 1193–1197. [Google Scholar] [CrossRef]
- Polyurethane Foaming Machine|PU Cast Machine Manufacturer|Lingxin. Available online: http://pufoam-tech.com/1-1-high-pressure-rigid-polyurethane-foam-machine.html (accessed on 4 January 2023).
- High-Pressure Polyurethane Metering Machines—For Producing Rigid Foams, Flexible Foams and Integral Skin Foams. Available online: https://www.hennecke.com/us/products/dosing/hp/overview (accessed on 4 January 2023).
- Polyurethane Foam Equipment | Articles | Home. Available online: https://www.imenpol.com/en/articles/polyurethane-foam-equipment (accessed on 4 January 2023).
- Kmieć, A. Procesy Cieplne i Aparaty; Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 2005; ISBN 83-7085-864-3. [Google Scholar]
- Wirpsza, Z. Poliuretany. Chemia, Technologia, Zastosowanie; Wydawnictwo Naukowo Techniczne: Warszawa, Poland, 1991; ISBN 8320411092. [Google Scholar]
- Del Saz-Orozco, B.; Alonso, M.V.; Oliet, M.; Domínguez, J.C.; Rojo, E.; Rodriguez, F. Lignin Particle- and Wood Flour-Reinforced Phenolic Foams: Friability, Thermal Stability and Effect of Hygrothermal Aging on Mechanical Properties and Morphology. Compos. Part B Eng. 2015, 80, 154–161. [Google Scholar] [CrossRef]
- Pretsch, T.; Jakob, I.; Müller, W. Hydrolytic Degradation and Functional Stability of a Segmented Shape Memory Poly(Ester Urethane). Polym. Degrad. Stab. 2009, 94, 61–73. [Google Scholar] [CrossRef]
Mixing Pressure [bar] | Polyol Temperatures [°C] | Isocyanate Temperature [°C] | Ambient Temperature [°C] | Ambient Pressure [hPa] |
---|---|---|---|---|
110 | 23.5 | 22.6 | 18.3 | 983 |
130 | 23.9 | 23.0 | 18.3 | 983 |
150 | 23.2 | 23.6 | 18.3 | 982 |
170 | 23.1 | 23.0 | 18.4 | 982 |
Mixing Pressure [bar] | Start Time [s] | Rise Time [s] | Gel Time [s] | Tack-Free Time [s] |
---|---|---|---|---|
110 | 10 | 159 | 191 | 270 |
130 | 10 | 161 | 190 | 276 |
150 | 8 | 160 | 189 | 280 |
170 | 7 | 135 | 160 | 260 |
Mixing Pressure [bar] | 110 | 130 | 150 | 170 | |
---|---|---|---|---|---|
Localization | [%] | [%] | [%] | [%] | |
The change in apparent density between A–B [%] | −6 | −7 | −6 | −8 |
Mixing Pressure [bar] | 110 | 130 | 150 | 170 | |
---|---|---|---|---|---|
Localization | [%] | [%] | [%] | [%] | |
A | 9.5 | 7.9 | 8.8 | 10.2 | |
B | 10.4 | 10.1 | 11.2 | 14.2 | |
The change in friability between A–B [%] | 9 | 22 | 21 | 28 |
Mixing Pressure [bar] | 110 | 130 | 150 | 170 | |
---|---|---|---|---|---|
The Change in Compressive Strength Between | [%] | [%] | [%] | [%] | |
A–B in a perpendicular direction | 3 | −1 | −2 | 6 | |
A–B in a parallel direction | 1 | −1 | −3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgrzyk, G.; Grzęda, D.; Ryszkowska, J. The Effect of Mixing Pressure in a High-Pressure Machine on Morphological and Physical Properties of Free-Rising Rigid Polyurethane Foams—A Case Study. Materials 2023, 16, 857. https://doi.org/10.3390/ma16020857
Węgrzyk G, Grzęda D, Ryszkowska J. The Effect of Mixing Pressure in a High-Pressure Machine on Morphological and Physical Properties of Free-Rising Rigid Polyurethane Foams—A Case Study. Materials. 2023; 16(2):857. https://doi.org/10.3390/ma16020857
Chicago/Turabian StyleWęgrzyk, Grzegorz, Dominik Grzęda, and Joanna Ryszkowska. 2023. "The Effect of Mixing Pressure in a High-Pressure Machine on Morphological and Physical Properties of Free-Rising Rigid Polyurethane Foams—A Case Study" Materials 16, no. 2: 857. https://doi.org/10.3390/ma16020857
APA StyleWęgrzyk, G., Grzęda, D., & Ryszkowska, J. (2023). The Effect of Mixing Pressure in a High-Pressure Machine on Morphological and Physical Properties of Free-Rising Rigid Polyurethane Foams—A Case Study. Materials, 16(2), 857. https://doi.org/10.3390/ma16020857