Modeling Materials Coextrusion in Polymers Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Coextrusion
2.2. Materials and Process Parameters
2.3. Models
2.3.1. Deposition Model
2.3.2. Elastic Modulus Analytical Model
2.3.3. Mechanical Properties by Homogenization
- 168,324 elements for 12.5%;
- 166,174 elements for 25.0%;
- 173,352 elements for 37.5%:
- 172,188 elements for 50.0%;
- 156,566 elements for 62.5%;
- 165,834 elements for 75.0%;
- 167,936 elements for 87.5%.
2.4. Experimental Characterization
2.4.1. Deposition
2.4.2. Mechanical Properties
- For the determination of the elastic modulus, the tests were performed on a MTS Electrodynamic Test Systems Acumen 3 equipped with a 3 kN load cell and a MTS 634.31 F extensometer. A 25 mm gauge length was used, and the test rate was 0.25 mm/min.
- For the characterization of the specimens up to failure, a Galdabini SUN 2500 equipped with a 25 kN load cell and a Galdabini PLAST extensometer was used. The test rate was 10 mm/min.
3. Results and Discussions
3.1. Materials Deposition
3.2. Mechanical Tests
3.3. RVE Analysis, Analytical Model, and Elastic Modulus Comparison
3.4. Further Considerations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 2021, 6, 4. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Zolfagharian, A.; Bodaghi, M.; Baghani, M. A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers 2022, 14, 5446. [Google Scholar] [CrossRef] [PubMed]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2022, 2201309. [Google Scholar] [CrossRef]
- Loh, G.H.; Pei, E.; Harrison, D.; Monzón, M.D. An Overview of Functionally Graded Additive Manufacturing. Addit. Manuf. 2018, 23, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Sponchiado, R.; Grigolato, L.; Filippi, S.; Concheri, G.; Meneghello, R.; Savio, G. Heterogeneous Materials Additive Manufacturing: An Overview. In Design Tools and Methods in Industrial Engineering II. ADM 2021. Lecture Notes in Mechanical Engineering; Rizzi, C., Campana, F., Bici, M., Gherardini, F., Ingrassia, T., Cicconi, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 462–473. ISBN 9783030912345. [Google Scholar]
- ASTM_F42; ISO/TC_261 ISO/ASTM TR 52912: 2020; Additive Manufacturing—Design—Functionally Graded Additive Manufacturing. ISO: Geneva, Switzerland, 2020.
- Pei, E.; Loh, G.H.; Harrison, D.; Almeida, H.d.A.; Monzón Verona, M.D.; Paz, R. A Study of 4D Printing and Functionally Graded Additive Manufacturing. Assem. Autom. 2017, 37, 147–153. [Google Scholar] [CrossRef]
- Saleh, B.; Jiang, J.; Fathi, R.; Al-hababi, T.; Xu, Q.; Wang, L.; Song, D.; Ma, A. 30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges. Compos. Part B 2020, 201, 108376. [Google Scholar] [CrossRef]
- Crump, S. Apparatus and Method for Creating Three-Dimensional Objects. U.S. Patent No. 5,121,329, 9 June 1992. [Google Scholar]
- ISO/ASTM 52900:2015 (ASTM F2792); Additive Manufacturing—General Principles—Terminology. ISO: Geneva, Switzerland, 2015.
- ESD-Safe 3D Printing Filaments. Available online: https://www.3dxtech.com/products/ (accessed on 13 October 2022).
- Ultimaker S3. Available online: https://ultimaker.com/3d-printers/ultimaker-s3 (accessed on 13 October 2022).
- Diamond Hotend. Available online: https://reprap.org/wiki/Diamond_Hotend (accessed on 11 October 2022).
- Garland, A.; Fadel, G. Design and Manufacturing Functionally Gradient Material Objects with an off the Shelf Three-Dimensional Printer: Challenges and Solutions. J. Mech. Des. Trans. ASME 2015, 137, 111407. [Google Scholar] [CrossRef]
- Han, S.; Xiao, Y.; Qi, T.; Li, Z.; Zeng, Q. Design and Analysis of Fused Deposition Modeling 3D Printer Nozzle for Color Mixing. Adv. Mater. Sci. Eng. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khondoker, M.A.H.; Asad, A.; Sameoto, D. Printing with Mechanically Interlocked Extrudates Using a Custom Bi-Extruder for Fused Deposition Modelling. Rapid Prototyp. J. 2018, 24, 921–934. [Google Scholar] [CrossRef]
- Kennedy, Z.C.; Christ, J.F. Printing Polymer Blends through in Situ Active Mixing during Fused Filament Fabrication. Addit. Manuf. 2020, 36, 101233. [Google Scholar] [CrossRef]
- Acrylic Prusa I3 PRO B 3D Printer DIY Kit. Available online: https://www.geeetech.com/acrylic-prusa-i3-pro-b-3d-printer-diy-kit-p-917.html (accessed on 11 October 2022).
- RUMBA—RepRap. Available online: https://reprap.org/wiki/RUMBA (accessed on 15 December 2022).
- Marlin Firmware. Available online: https://marlinfw.org/ (accessed on 11 October 2022).
- Cyclops Drawings. Available online: https://e3d-online.zendesk.com/hc/en-us/articles/360017132577-Cyclops-Drawings (accessed on 11 October 2022).
- BMG Extruder. Available online: https://www.bondtech.se/product/bmg-extruder/ (accessed on 11 October 2022).
- E3D Cyclops. Available online: https://grabcad.com/library/e3d-cyclops-1 (accessed on 11 October 2022).
- M163—Set Mix Factor. Available online: https://marlinfw.org/docs/gcode/M163.html (accessed on 11 October 2022).
- Select Tool. Available online: https://marlinfw.org/docs/gcode/T001-T002.html (accessed on 11 October 2022).
- Configuring Marlin. Available online: https://marlinfw.org/docs/configuration/configuration.html (accessed on 11 October 2022).
- Data Sheets & 3D Printing Guides. Available online: https://fillamentum.com/pages/data-sheets-and-3d-printing-guides/ (accessed on 11 October 2022).
- Vakharia, V.S.; Kuentz, L.; Salem, A.; Halbig, M.C.; Salem, J.A.; Singh, M. Additive Manufacturing and Characterization of Metal Particulate Reinforced Polylactic Acid (Pla) Polymer Composites. Polymers 2021, 13, 3545. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.T.L.; Amatte, I.C.; Dutra, T.A.; Bürger, D. Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers. Compos. Part B Eng. 2017, 124, 88–100. [Google Scholar] [CrossRef]
- Yap, Y.L.; Toh, W.; Koneru, R.; Chua, Z.Y.; Lin, K.; Yeoh, K.M.; Lim, C.M.; Lee, J.S.; Plemping, N.A.; Lin, R.; et al. Finite Element Analysis of 3D-Printed Acrylonitrile Styrene Acrylate (ASA) with Ultrasonic Material Characterization. Int. J. Comput. Mater. Sci. Eng. 2019, 08, 1950002. [Google Scholar] [CrossRef]
- Cahyadi, W. Mechanical Properties of 3D Printed Acrylonitrile Styrene Acrylate; South Dakota State University: Brookings, SD, USA, 2018. [Google Scholar]
- Qi, H.J.; Boyce, M.C. Stress-Strain Behavior of Thermoplastic Polyurethanes. Mech. Mater. 2005, 37, 817–839. [Google Scholar] [CrossRef]
- Xu, Y.X.; Juang, J.Y. Measurement of Nonlinear Poisson’s Ratio of Thermoplastic Polyurethanes under Cyclic Softening Using 2d Digital Image Correlation. Polymers 2021, 13, 1498. [Google Scholar] [CrossRef]
- Grigolato, L.; Rosso, S.; Meneghello, R.; Concheri, G.; Savio, G. Design and Manufacturing of Graded Density Components by Material Extrusion Technologies. Addit. Manuf. 2022, 57, 102950. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Chao, X.; Liang, J.; Fu, M. Periodic Boundary Condition and Its Numerical Implementation Algorithm for the Evaluation of Effective Mechanical Properties of the Composites with Complicated Micro-Structures. Compos. Part B Eng. 2019, 162, 1–10. [Google Scholar] [CrossRef]
- Hasanov, S.; Gupta, A.; Alifui-Segbaya, F.; Fidan, I. Hierarchical Homogenization and Experimental Evaluation of Functionally Graded Materials Manufactured by the Fused Filament Fabrication Process. Compos. Struct. 2021, 275, 114488. [Google Scholar] [CrossRef]
- Ferretti, P.; Santi, G.M.; Leon-Cardenas, C.; Fusari, E.; Donnici, G.; Frizziero, L. Representative Volume Element (Rve) Analysis for Mechanical Characterization of Fused Deposition Modeled Components. Polymers 2021, 13, 3555. [Google Scholar] [CrossRef]
- Material Designer Users Guide; Release R2; ANSYS, Inc.: Canonsburg, PA, USA, 2022.
- Nguyen, V.D.; Béchet, E.; Geuzaine, C.; Noels, L. Imposing Periodic Boundary Condition on Arbitrary Meshes by Polynomial Interpolation. Comput. Mater. Sci. 2012, 55, 390–406. [Google Scholar] [CrossRef]
- Vigliotti, A.; Pasini, D. Stiffness and Strength of Tridimensional Periodic Lattices. Comput. Methods Appl. Mech. Eng. 2012, 229–232, 27–43. [Google Scholar] [CrossRef] [Green Version]
- ISO/ASTM ISO/ASTM DIS 52927; Additive Manufacturing—General Principle—Main Characteristics and Corresponding Test Methods. ISO: Geneva, Switzerland, 2022.
- ISO 527-1:2012; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2012.
- ISO/ASTM ISO/ASTM 52903-2:2020; Additive Manufacturing—Material Extrusion-Based Additive Manufacturing of Plastic Materials—Part 2: Process Equipment. ISO: Geneva, Switzerland, 2020.
- Radzuan, N.A.M.; Sulong, A.B.; Verma, A.; Muhamad, N. Layup Sequence and Interfacial Bonding of Additively Manufactured Polymeric Composite: A Brief Review. Nanotechnol. Rev. 2021, 10, 1853–1872. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Gonabadi, H.; Chen, Y.; Yadav, A.; Bull, S. Investigation of the Effect of Raster Angle, Build Orientation, and Infill Density on the Elastic Response of 3D Printed Parts Using Finite Element Microstructural Modeling and Homogenization Techniques. Int. J. Adv. Manuf. Technol. 2022, 118, 1485–1510. [Google Scholar] [CrossRef]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The Influence of Slicing Parameters on the Multi-Material Adhesion Mechanisms of FDM Printed Parts: An Exploratory Study. Virtual Phys. Prototyp. 2019, 14, 316–332. [Google Scholar] [CrossRef]
- Dal Fabbro, P.; La Gala, A.; Van De Steene, W.; D’hooge, D.R.; Lucchetta, G.; Cardon, L.; Fiorio, R. Influence of Machine Type and Consecutive Closed-Loop Recycling on Macroscopic Properties for Fused Filament Fabrication of Acrylonitrile-Butadiene-Styrene Parts. Rapid Prototyp. J. 2021, 27, 268–277. [Google Scholar] [CrossRef]
- Freund, R.; Watschke, H.; Heubach, J.; Vietor, T. Determination of Influencing Factors on Interface Strength of Additively Manufactured Multi-Material Parts by Material Extrusion. Appl. Sci. 2019, 9, 1782. [Google Scholar] [CrossRef] [Green Version]
- Vázquez Martínez, J.M.; Piñero Vega, D.; Salguero, J.; Batista, M. Evaluation of the Printing Strategies Design on the Mechanical and Tribological Response of Acrylonitrile Styrene Acrylate (ASA) Additive Manufacturing Parts. Rapid Prototyp. J. 2022, 28, 479–489. [Google Scholar] [CrossRef]
- Rodríguez-Panes, A.; Claver, J.; Camacho, A.M. The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef] [Green Version]
- Lanzotti, A.; Grasso, M.; Staiano, G.; Martorelli, M. The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer. Rapid Prototyp. J. 2015, 21, 604–617. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Raam Kumar, S.; Sridhar, S.; Venkatraman, R.; Venkatesan, M. Polymer Additive Manufacturing of ASA Structure: Influence of Printing Parameters on Mechanical Properties. Mater. Today Proc. 2020, 39, 1316–1319. [Google Scholar] [CrossRef]
- Adrover-Monserrat, B.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Study of the Influence of the Manufacturing Parameters on Tensile Properties of Thermoplastic Elastomers. Polymers 2022, 14, 576. [Google Scholar] [CrossRef] [PubMed]
- Arifvianto, B.; Satiti, B.E.; Salim, U.A.; Nuryanti, A.; Mahardika, M. Mechanical Properties of the FFF Sandwich-Structured Parts Made of PLA/TPU Multi-Material. Prog. Addit. Manuf. 2022, 7, 1213–1223. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Yao, X.; Moon, S.K.; Bi, G.; Wei, J. A Multi-Material Part Design Framework in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2018, 99, 2111–2119. [Google Scholar] [CrossRef]
- Muller, P.; Mognol, P.; Hascoet, J.Y. Functionally Graded Material (FGM) Parts: From Design to the Manufacturing Simulation. In Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA 2012, Nantes, France, 2–4 July 2012; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2012; Volume 4, pp. 123–131. [Google Scholar]
- Yin, J.; Lu, C.; Fu, J.; Huang, Y.; Zheng, Y. Interfacial Bonding during Multi-Material Fused Deposition Modeling (FDM) Process Due to Inter-Molecular Diffusion. Mater. Des. 2018, 150, 104–112. [Google Scholar] [CrossRef]
Properties | PLA Extrafill | ASA Extrafill | Flexfill TPU 98A |
---|---|---|---|
Density (g/cm3) | 1.24 | 1.07 | 1.23 |
Ultimate tensile strength (MPa) | 60 | 40 | 53.7 |
Elongation at break (%) | 6 | 35 | 318 |
Tensile modulus (MPa) | 3600 | 1726 | - |
Poisson ratio | 0.33 [28,29] | 0.38 [30,31] | 0.45 [32,33] |
Heat distortion temperature (at 0.45 (MPa)) [°C] | 55 | 96 | - |
Print temperature (range) (°C) | 190–210 | 240–255 | 220–240 |
Bed temperature (range) (°C) | 55–60 | 90–105 | 50–60 |
Properties | PLA-TPU | ASA-TPU |
---|---|---|
Nozzle temperature (°C) | 220 | 240 |
Bed temperature (°C) | 60 | 80 |
Printing speed (mm/s) | 30 | |
Nozzle diameter (mm) | 0.4 | |
Layer thickness (mm) | 0.2 | |
Number of perimeters | 3 | |
Infill density | 100% |
Spring Model | Spring Stiffness | Elastic Modulus |
---|---|---|
| | |
| ||
| |
Studied Feature | Models | Experiments |
---|---|---|
Deposition | Rectangular model, Equation (3) | Dodecagon, Optical microscope |
Adhesion/porosity | / | SEM |
Mechanical properties | Analytical model, Table 3 | Tensile tests |
Homogenization based on RVE FEM analysis |
%TPU (100-%PLA) | 0.0% | 12.5% | 25.0% | 37.5% | 50.0% | 62.5% | 75.0% | 87.5% | 100.0% |
---|---|---|---|---|---|---|---|---|---|
Ex [MPa] | 3425.0 | 2532.7 | 2014.3 | 1609.3 | 1259.2 | 949.2 | 674.3 | 419.4 | 161.6 |
Ey [MPa] | 3425.0 | 2988.2 | 2504.7 | 1988.5 | 1422.2 | 1016.9 | 739.0 | 468.3 | 161.6 |
Ez [MPa] | 3425.0 | 2345.1 | 1662.0 | 1190.0 | 831.1 | 588.7 | 434.0 | 308.6 | 161.6 |
Gxy [MPa] | 1287.6 | 861.6 | 674.2 | 512.0 | 344.6 | 214.7 | 151.5 | 104.5 | 55.9 |
Gyz [MPa] | 1287.6 | 800.4 | 624.6 | 481.7 | 318.5 | 173.0 | 120.6 | 88.0 | 55.9 |
Gzx [MPa] | 1287.6 | 605.1 | 427.8 | 306.7 | 200.1 | 116.5 | 84.7 | 66.2 | 55.9 |
νxy | 0.330 | 0.284 | 0.262 | 0.244 | 0.222 | 0.212 | 0.227 | 0.276 | 0.450 |
νxz | 0.330 | 0.321 | 0.352 | 0.398 | 0.457 | 0.516 | 0.547 | 0.544 | 0.450 |
νyz | 0.330 | 0.352 | 0.392 | 0.448 | 0.523 | 0.555 | 0.562 | 0.538 | 0.450 |
%TPU (100-%ASA) | 0.0% | 12.5% | 25.0% | 37.5% | 50.0% | 62.5% | 75.0% | 87.5% | 100.0% |
---|---|---|---|---|---|---|---|---|---|
Ex [MPa] | 1812.1 | 1445.6 | 1180.2 | 961.1 | 768.5 | 597.3 | 444.7 | 303.7 | 161.6 |
Ey [MPa] | 1812.1 | 1592.7 | 1353.4 | 1100.8 | 833.5 | 632.5 | 479.4 | 329.6 | 161.6 |
Ez [MPa] | 1812.1 | 1395.3 | 1065.9 | 807.1 | 596.3 | 448.6 | 345.1 | 259.0 | 161.6 |
Gxy [MPa] | 656.6 | 474.9 | 378.1 | 295.8 | 215.9 | 154.9 | 117.5 | 87.1 | 55.9 |
Gyz [MPa] | 656.6 | 456.2 | 362.9 | 288.5 | 210.6 | 139.5 | 103.3 | 78.9 | 55.9 |
Gzx [MPa] | 656.6 | 377.9 | 277.6 | 209.0 | 150.4 | 103.9 | 80.1 | 65.0 | 55.9 |
νxy | 0.380 | 0.347 | 0.327 | 0.311 | 0.295 | 0.290 | 0.304 | 0.346 | 0.450 |
νxz | 0.380 | 0.373 | 0.392 | 0.423 | 0.462 | 0.496 | 0.511 | 0.501 | 0.450 |
νyz | 0.380 | 0.394 | 0.418 | 0.454 | 0.502 | 0.523 | 0.520 | 0.495 | 0.450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sponchiado, R.; Rosso, S.; Dal Fabbro, P.; Grigolato, L.; Elsayed, H.; Bernardo, E.; Maltauro, M.; Uccheddu, F.; Meneghello, R.; Concheri, G.; et al. Modeling Materials Coextrusion in Polymers Additive Manufacturing. Materials 2023, 16, 820. https://doi.org/10.3390/ma16020820
Sponchiado R, Rosso S, Dal Fabbro P, Grigolato L, Elsayed H, Bernardo E, Maltauro M, Uccheddu F, Meneghello R, Concheri G, et al. Modeling Materials Coextrusion in Polymers Additive Manufacturing. Materials. 2023; 16(2):820. https://doi.org/10.3390/ma16020820
Chicago/Turabian StyleSponchiado, Riccardo, Stefano Rosso, Pierandrea Dal Fabbro, Luca Grigolato, Hamada Elsayed, Enrico Bernardo, Mattia Maltauro, Francesca Uccheddu, Roberto Meneghello, Gianmaria Concheri, and et al. 2023. "Modeling Materials Coextrusion in Polymers Additive Manufacturing" Materials 16, no. 2: 820. https://doi.org/10.3390/ma16020820
APA StyleSponchiado, R., Rosso, S., Dal Fabbro, P., Grigolato, L., Elsayed, H., Bernardo, E., Maltauro, M., Uccheddu, F., Meneghello, R., Concheri, G., & Savio, G. (2023). Modeling Materials Coextrusion in Polymers Additive Manufacturing. Materials, 16(2), 820. https://doi.org/10.3390/ma16020820