Special Issue “Advanced Pulse Laser Machining Technology”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saraceno, J.C.; Sutter, D.; Metzger, T.; Ahmed, M.A. The amazing progress of high-power ultrafast thin-disk lasers. J. Eur. Opt. Soc. Rapid publ. 2019, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Schille, J.; Löschner, U. Ultrashort pulse lasers in high-rate laser micro processing—Quo vadis? Adv. Opt. Technol. 2021, 10, 233–237. [Google Scholar] [CrossRef]
- Weber, R.; Graf, T. The challenges of productive materials processing with ultrafast lasers. Adv. Opt. Technol. 2021, 10, 239–245. [Google Scholar] [CrossRef]
- Han, M.; Smith, D.; Ng, S.H.; Anand, V.; Katkus, T.; Juodkazis, S. Ultra-short-pulse lasers—Materials—Applications. Eng. Proc. 2021, 11, 44. [Google Scholar]
- Müller, M.; Aleshire, C.; Klenke, A.; Haddad, E.; Légaré, F.; Tünnermann, A.; Limpert, J. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett. 2020, 45, 3083–3086. [Google Scholar] [CrossRef] [PubMed]
- Račiukaitis, G. Ultra-short pulse lasers for microfabrication: A review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1100112. [Google Scholar] [CrossRef]
- Kautek, W.; Krüger, J. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials. Proc. SPIE 1994, 2207, 600–611. [Google Scholar]
- Račiukaitis, G.; Brikas, M.; Gecys, P.; Voisiat, B.; Gedvilas, M. Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high? J. Laser Micro Nanoeng. 2009, 4, 186–191. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Jäggi, B.; Schmid, M.; Hennig, G. Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput. Phys. Procedia 2014, 56, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Schille, J.; Schneider, L.; Mauersberger, S.; Szokup, S.; Höhn, S.; Pötschke, J.; Reiß, F.; Leidich, E.; Löschner, U. High-rate laser surface texturing for advanced tribological functionality. Lubricants 2020, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- De Loor, R. Polygon scanner system for ultra short pulsed laser micro-machining applications. Phys. Procedia 2013, 41, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Thogersen, J.; Borowiec, A.; Haugen, H.K.; McNeill, F.E.; Stronach, I.M. X-ray emission from femtosecond laser micromachining. Appl. Phys. A 2001, 73, 361–363. [Google Scholar] [CrossRef]
- Bunte, J.; Barcikowski, S.; Püster, T.; Burmester, T.; Brose, M.; Ludwig, T. Secondary hazards: Particle and X-ray emission. Topics Appl. Phys. 2004, 96, 309–321. [Google Scholar]
- Prieto-Pena, J.; Gómez, F.; González-Castaño, D.M.; Flores-Arias, M.T.; Arines, J.; Bao-Varela, C.; Cambronero-López, F.; Martínez Maqueira, A. X-ray emission from femtosecond laser micromachining. J. Radiol. Prot. 2018, 38, 716–730. [Google Scholar] [CrossRef]
- Legall, H.; Schwanke, C.; Pentzien, S.; Dittmar, G.; Bonse, J.; Krüger, J. X-ray emission as a potential hazard during ultrashort pulse laser material processing. Appl. Phys. A 2018, 124, 407. [Google Scholar] [CrossRef] [Green Version]
- Behrens, R.; Pullner, B.; Reginatto, M. X-ray emission from materials processing lasers. Radiat. Prot. Dosim. 2019, 183, 361–374. [Google Scholar] [CrossRef]
- Weber, R.; Giedl-Wagner, R.; Förster, D.J.; Pauli, A.; Graf, T.; Balmer, J.E. Expected X-ray dose rates resulting from industrial ultrafast laser applications. Appl. Phys. A 2019, 125, 635. [Google Scholar] [CrossRef] [Green Version]
- Legall, H.; Schwanke, C.; Bonse, J.; Krüger, J. X-ray radiation protection aspects during ultrashort laser processing. J. Laser Appl. 2020, 32, 022004. [Google Scholar] [CrossRef] [Green Version]
- Freitag, C.; Giedl-Wagner, R. X-ray protection in an industrial production environment. PhotonicsViews 2020, 17, 37–41. [Google Scholar] [CrossRef]
- Legall, H.; Bonse, J.; Krüger, J. Review of X-ray exposure and safety issues arising from ultra-short pulse laser material pro-cessing. J. Radiol. Prot. 2021, 41, R28–R42. [Google Scholar] [CrossRef]
- Metzner, D.; Olbrich, M.; Lickschat, P.; Horn, A.; Weißmantel, S. X-ray generation by laser ablation using MHz to GHz pulse bursts. J. Laser Appl. 2021, 33, 032014. [Google Scholar] [CrossRef]
- Mosel, P.; Sankar, P.; Düsing, J.F.; Dittmar, G.; Püster, T.; Jäschke, P.; Vahlbruch, J.-W.; Morgner, U.; Kovacev, M. X-ray dose rate and spectral measurements during ultrafast laser machining using a calibrated (high-sensitivity) novel X-ray detector. Materials 2021, 14, 4397. [Google Scholar] [CrossRef]
- Schille, J.; Kraft, S.; Pflug, T.; Scholz, C.; Clair, M.; Horn, A.; Löschner, U. Study on X-ray emission using ultrashort pulsed lasers in materials processing. Materials 2021, 14, 4537. [Google Scholar] [CrossRef]
- Stolzenberg, U.; Schmitt Rahner, M.; Pullner, B.; Legall, H.; Bonse, J.; Kluge, M.; Ortner, A.; Hoppe, B.; Krüger, J. X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting. Materials 2021, 14, 7163. [Google Scholar] [CrossRef]
- Schille, J.; Kraft, S.; Kattan, D.; Löschner, U. Enhanced X-ray emissions arising from high pulse repetition frequency ultrashort pulse laser materials processing. Materials 2022, 15, 2748. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, K.; Schmitt Rahner, M.; Stolzenberg, U.; Kraft, S.; Bonse, J.; Feist, C.; Albrecht, D.; Pullner, B.; Krüger, J. Worst-case X-ray photon energies in ultrashort pulse laser processing. Materials 2022, 15, 8996. [Google Scholar] [CrossRef]
- Förster, D.J.; Jäggi, B.; Michalowski, A.; Neuenschwander, B. Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 2021, 14, 3331. [Google Scholar] [CrossRef]
- Florian, C.; Serra, P. Printing via laser-induced forward transfer and the future of digital manufacturing. Materials 2023, 16, 698. [Google Scholar] [CrossRef]
- Hauschwitz, P.; Stoklasa, B.; Kuchařík, J.; Turčičová, H.; Písařík, M.; Brajer, J.; Rostohar, D.; Mocek, T.; Duda, M.; Lucianetti, A. Micromachining of invar with 784 Beams using 1.3 ps laser source at 515 nm. Materials 2020, 13, 2962. [Google Scholar] [CrossRef]
- Wenisch, C.; Engel, S.; Gräf, S.; Müller, F.A. Dual laser beam processing of semiconducting thin films by excited state absorption. Materials 2021, 14, 1256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Kraft, S.; Perrie, W.; Schille, J.; Löschner, U.; Edwardson, S.; Dearden, G. Backward flux re-deposition patterns during multi-spot laser ablation of stainless steel with picosecond and femtosecond pulses in air. Materials 2021, 14, 2243. [Google Scholar] [CrossRef] [PubMed]
- Schlutow, H.; Fuchs, U.; Müller, F.A.; Gräf, S. Squared focal intensity distributions for applications in laser material processing. Materials 2021, 14, 4981. [Google Scholar] [CrossRef] [PubMed]
- Aboud, D.G.K.; Wood, M.J.; Zeppetelli, G.; Joy, N.; Kietzig, A.-M. A practical comparison of beam shuttering technologies for pulsed laser micromachining applications. Materials 2022, 15, 897. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C.; Giust, R.; Furfaro, L.; Billet, C.; Froehly, L.; Courvoisier, F. High aspect ratio structuring of glass with ultrafast Bessel beams. Materials 2021, 14, 6749. [Google Scholar] [CrossRef]
- El-Khoury, M.; Voisiat, B.; Kunze, T.; Lasagni, A.F. Prediction of optimum process parameters fabricated by direct laser interference patterning based on central composite design. Materials 2020, 13, 4101. [Google Scholar] [CrossRef]
- Macias-Montero, M.; Moreno-Zárate, P.; Muñoz, F.; Sotillo, B.; Garcia-Pardo, M.; Serna, R.; Fernandez, P.; Solis, J. Competition effects during femtosecond laser induced element redistribution in Ba- and La-migration based laser written waveguides. Materials 2021, 14, 3185. [Google Scholar] [CrossRef]
- Florian, C.; Fischer, D.; Freiberg, K.; Duwe, M.; Sahre, M.; Schneider, S.; Hertwig, A.; Krüger, J.; Rettenmayr, M.; Beck, U.; et al. Single femtosecond laser-pulse-induced superficial amorphization and re-crystallization of silicon. Materials 2021, 14, 1651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, J.; Bonse, J. Special Issue “Advanced Pulse Laser Machining Technology”. Materials 2023, 16, 819. https://doi.org/10.3390/ma16020819
Krüger J, Bonse J. Special Issue “Advanced Pulse Laser Machining Technology”. Materials. 2023; 16(2):819. https://doi.org/10.3390/ma16020819
Chicago/Turabian StyleKrüger, Jörg, and Jörn Bonse. 2023. "Special Issue “Advanced Pulse Laser Machining Technology”" Materials 16, no. 2: 819. https://doi.org/10.3390/ma16020819
APA StyleKrüger, J., & Bonse, J. (2023). Special Issue “Advanced Pulse Laser Machining Technology”. Materials, 16(2), 819. https://doi.org/10.3390/ma16020819