Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device
Abstract
:1. Introduction
2. Principle of Remanence Measurement
3. Test Results and Discussion
3.1. Remanence Test of Concrete Component Materials
3.2. Remanence Testing of Composite Materials
3.3. Remanence Test of Metal Structural Materials
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Quan, W.; Han, B.; Wang, Z.; Fang, J. Design and Optimization of Multilayer Cylindrical Magnetic Shield for SERF Atomic Magnetometer Application. IEEE Sens. J. 2020, 20, 1793–1800. [Google Scholar] [CrossRef]
- Kvitkovic, J.; Patel, S.; Pamidi, S. Magnetic Shielding Characteristics of Hybrid High-Temperature Superconductor/Ferromagnetic Material Multilayer Shields. IEEE Trans. Appl. Supercond. 2017, 27, 4700705. [Google Scholar] [CrossRef]
- Packer, M.; Hobson, P.J.; Davis, A.; Holmes, N.; Leggett, J.; Glover, P.; Hardwicke, N.L.; Brookes, M.J.; Bowtell, R.; Fromhold, T.M. Magnetic Field Design in a Cylindrical High-Permeability Shield: The Combination of Simple Building Blocks and a Genetic Algorithm. arXiv 2021, arXiv:2107.03170. [Google Scholar] [CrossRef]
- Ates, K.; Carlak, H.F.; Ozen, S. Dosimetry Analysis of the Magnetic Field of Underground Power Cables and Magnetic Field Mitigation Using an Electromagnetic Shielding Technique. Int. J. Occup. Saf. Ergon. 2022, 28, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, S.; Kojima, T.; Mizuno, K.; Kagawa, K.; Wakamatsu, A. Electromagnetic Simulation of Low-Frequency Magnetic Shielding of a Welded Steel Plate. IEEE Trans. Electromagn. Compat. 2021, 63, 1896–1903. [Google Scholar] [CrossRef]
- Holmes, N.; Leggett, J.; Boto, E.; Roberts, G.; Hill, R.M.; Tierney, T.M.; Shah, V.; Barnes, G.R.; Brookes, M.J.; Bowtell, R. A Bi-Planar Coil System for Nulling Background Magnetic Fields in Scalp Mounted Magnetoencephalography. Neuroimage 2018, 181, 760–774. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Han, B.; Wang, J.; Wang, L. Design of Biplanar Coils for Degrading Residual Field in Magnetic Shielding Room. IEEE Trans. Instrum. Meas. 2021, 70, 6010110. [Google Scholar] [CrossRef]
- Yang, K.; Wu, D.; Gao, W.; Ni, T.; Zhang, Q.; Zhang, H.; Huang, D. Calibration of SQUID Magnetometers in Multichannel MCG System Based on Bi-Planar Coil. IEEE Trans. Instrum. Meas. 2022, 71, 1002209. [Google Scholar] [CrossRef]
- Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujic, Z.; Helaine, V.; et al. Dynamic Stabilization of the Magnetic Field Surrounding the Neutron Electric Dipole Moment Spectrometer at the Paul Scherrer Institute. J. Appl. Phys. 2014, 116, 084510. [Google Scholar] [CrossRef] [Green Version]
- Kuchler, F.; Babcock, E.; Burghoff, M.; Chupp, T.; Degenkolb, S.; Fan, I.; Fierlinger, P.; Gong, F.; Kraegeloh, E.; Kilian, W.; et al. A New Search for the Atomic EDM of 129Xe at FRM-II. Hyperfine Interact 2016, 237, 95. [Google Scholar] [CrossRef]
- Tashiro, K.; Wakiwaka, H.; Matsumura, K.; Okano, K. Desktop Magnetic Shielding System for the Calibration of High-Sensitivity Magnetometers. IEEE Trans. Magn. 2011, 47, 4270–4273. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.F.; Quan, W.; Liu, F.; Pang, H.Y.; Xing, L.; Liu, G. Performance of Low-Noise Ferrite Shield in a K-Rb-Ne-21 Co-Magnetometer. IEEE Sens. J. 2020, 20, 2543–2549. [Google Scholar] [CrossRef]
- Borradaile, G.J.; Geneviciene, I. Measuring heterogeneous remanence in paleomagnetism. Geophys. Res. Lett. 2007, 34, L12302. [Google Scholar] [CrossRef]
- Feinberg, J.M.; Solheid, P.A.; Swanson-Hysell, N.L.; Jackson, M.J.; Bowles, J.A. Full vector low-temperature magnetic measurements of geologic materials. Geochem. Geophys. Geosyst. 2015, 16, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Bilardello, D.; Jackson, M.J. A comparative study of magnetic anisotropy measurement techniques in relation to rock-magnetic properties. Tectonophysics 2014, 629, 39–54. [Google Scholar] [CrossRef]
- He, Y.Z. Study on cryogenic remanence measurement technology for chunk permanent magnet. Acta Phys. Sin. 2013, 62. [Google Scholar] [CrossRef]
- Biedermann, A.R.; Jackson, M.; Bilardello, D.; Feinberg, J.M. Anisotropy of Full and Partial Anhysteretic Remanence Across Different Rock Types: 2-Coercivity Dependence of Remanence Anisotropy. Tectonics 2020, 39, 217502. [Google Scholar] [CrossRef]
- Robustelli Test, C.; Zanella, E. Rock Magnetic Signature of Heterogeneities Across an Intraplate Basal Contact: An Example From the Northern Apennines. Geochem. Geophys. Geosyst. 2021, 22, e2021GC010004. [Google Scholar] [CrossRef]
- Lund, S.; Platzman, E. Millennial-Scale Environmental Variability in Late Quaternary Deep-Sea Sediments from the Demerara Rise, NE Coast of South America. Oceans 2021, 2, 246–265. [Google Scholar] [CrossRef]
- Monaico, E.V.; Morari, V.; Kutuzau, M.; Ursaki, V.V.; Nielsch, K.; Tiginyanu, I.M. Magnetic Properties of GaAs/NiFe Coaxial Core-Shell Structures. Materials 2022, 15, 6262. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Li, X.; Yang, M.; Ma, Z.; Hou, H. Novel Remanence Determination for Power Transformers Based on Magnetizing Inductance Measurements. Energies 2019, 12, 4616. [Google Scholar] [CrossRef] [Green Version]
- Malkowski, S.; Adhikari, R.; Hona, B.; Mattie, C.; Woods, D.; Yan, H.; Plaster, B. Technique for high axial shielding factor performance of large-scale, thin, open-ended, cylindrical Metglas magnetic shields. Rev. Sci. Instrum. 2011, 82, 075104. [Google Scholar] [CrossRef] [PubMed]
Test Sample | Test Magnetic Field BT (nT) | Background Magnetic Field BB (nT) | Remanence Br (nT) |
---|---|---|---|
Sample 1 | −27.7 | 6.4 | 34.1 |
Sample 2 | 24.2 | 6.4 | 17.8 |
Sample 3 | −91.6 | 6.4 | 98.0 |
Sample 4 | 41.8 | 6.4 | 0.4 |
Sample 5 | −168.2 | 6.4 | 174.6 |
Sample 6 | −1.8 | 6.4 | 8.2 |
Sample 7 | −39.2 | 6.4 | 45.6 |
Sample 8 | 12.7 | 6.4 | 6.3 |
Sample 9 | −13.4 | 6.4 | 19.8 |
Sample 10 | 80.3 | 6.4 | 73.9 |
Sample 11 | 35.4 | 6.4 | 29.0 |
Sample 12 | 3.3 | 6.4 | 3.1 |
Sample 13 | −1244.2 | 6.4 | 1250.6 |
Sample 14 | −1.0 | 6.4 | 7.4 |
Sample 15 | −1005.2 | 6.4 | 1011.6 |
Sample 16 | 5.6 | 5.3 | 0.3 |
Sample 17 | 19.9 | 5.3 | 14.6 |
Sample 18 | −31.2 | 5.3 | 36.5 |
Sample 19 | 6.5 | 5.3 | 1.2 |
Sample 20 | 4.3 | 5.3 | 1.0 |
Test Sample | Test Magnetic Field BT (nT) | Background Magnetic Field BB (nT) | Remanence Br (nT) |
---|---|---|---|
Sample 1 | 3.5 | 3.4 | 0.1 |
Sample 2 | 3.8 | 3.4 | 0.4 |
Sample 3 | 3.8 | 3.4 | 0.4 |
Sample 4 | 4.1 | 3.4 | 0.7 |
Test Sample | Test Magnetic Field BT (nT) | Background Magnetic Field BB (nT) | Remanence Br (nT) |
---|---|---|---|
Sample 1 | 3.8 | 3.4 | 0.4 |
Sample 2 | 3.9 | 3.4 | 0.5 |
Sample 3 | 3.7 | 3.4 | 0.3 |
Sample 4 | 8013.1 | 3.4 | 8009.7 |
Test Sample | Remanence Br (nT) |
---|---|
Concrete component material sample 4 (dolomite) | 0.4 |
Concrete component material sample 12 (white cement mortar block) | 3.1 |
Concrete component material sample 16 (white cement) | 0.3 |
Concrete component material sample 19 (quartz sand) | 1.2 |
Concrete component material sample 20 (mineral powder) | 1.0 |
Composite materials sample 1 (vinyl resin) | 0 |
Composite materials sample 2 (glass fiber) | 0.4 |
Composite materials sample 3 (basalt fiber composite bar) | 0.4 |
Composite materials sample 4 (carbon steel) | 0.7 |
Metal structural materials sample 1 (aluminum alloy) | 0.4 |
Metal structural materials sample 2 (copper) | 0.5 |
Metal structural materials sample 3 (pure aluminum) | 0.3 |
Test Sample | Remanence Br (nT) |
---|---|
Concrete component material sample 6 (limestone) | 8.2 |
Concrete component material sample 8 (clay ceramsite from Jiaxing) | 6.3 |
Concrete component material sample 14 (ceramic sheet) | 7.4 |
Concrete component material sample 17 (grey cement) | 14.6 |
Test Sample | Remanence Br (nT) |
---|---|
Concrete component material sample 1 (sand from Hangzhou) | 34.1 |
Concrete component material sample 2 (sand from Jiande) | 17.8 |
Concrete component material sample 7 (cement gravel) | 45.6 |
Concrete component material sample 9 (clay ceramsite from Hubei) | 19.8 |
Concrete component material sample 11 (grey cement mortar block) | 29.0 |
Concrete component material sample 18 (fly ash) | 36.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Luo, Y.; Shen, R.; Kong, D.; Zhou, W. Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device. Materials 2023, 16, 681. https://doi.org/10.3390/ma16020681
Cheng Y, Luo Y, Shen R, Kong D, Zhou W. Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device. Materials. 2023; 16(2):681. https://doi.org/10.3390/ma16020681
Chicago/Turabian StyleCheng, Yuan, Yaozhi Luo, Ruihong Shen, Deyu Kong, and Weiyong Zhou. 2023. "Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device" Materials 16, no. 2: 681. https://doi.org/10.3390/ma16020681
APA StyleCheng, Y., Luo, Y., Shen, R., Kong, D., & Zhou, W. (2023). Testing and Analysis Method of Low Remanence Materials for Magnetic Shielding Device. Materials, 16(2), 681. https://doi.org/10.3390/ma16020681