Effect of CaO Sourced from CaCO3 or CaSO4 on Phase Formation and Mineral Composition of Iron-Rich Calcium Sulfoaluminate Clinker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Mixture
2.2. Preparation Method
2.3. Testing Methods
3. Results and Discussion
3.1. Decomposition Rate of CaSO4 to Free-CaO
3.2. Mineralogical Characterization
3.2.1. Qualitative Phase Analysis
3.2.2. Quantitative Phase Analysis
3.3. Chemical Composition of Key Mineral Phases in Iron-Rich Sulfoaluminate Clinker
3.3.1. Chemical Composition of Ye’Elimite
3.3.2. Chemical Composition of Belite
3.3.3. Chemical Composition of Ferrite Phase
3.4. Microstructural Characterization
3.5. Compressive Strength of the IR-CSA Cement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharp, J.H. Calcium sulfoaluminate cements—Low-energy cements, special cements or what? Adv. Cem. Res. 1999, 11, 3–13. [Google Scholar] [CrossRef]
- Zhang, L.; Su, M.; Wang, Y. Development of the use of sulfo- and ferroaluminate cements in China. Adv. Cem. Res. 1999, 11, 15–21. [Google Scholar] [CrossRef]
- Haha, M.B.; Winnefeld, F.; Pisch, A. Advances in understanding ye’elimite-rich cements. Cem. Concr. Res. 2019, 123, 105778. [Google Scholar] [CrossRef]
- Singh, M.; Upadhayhay, S.; Prasad, P. Preparation of iron rich cements using red mud. Cem. Concr. Res. 1997, 27, 1037–1046. [Google Scholar] [CrossRef]
- Khalil, N.; Aouad, G.; El Cheikh, K.; Rémond, S. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr. Build. Mater. 2017, 157, 382–391. [Google Scholar] [CrossRef]
- Péra, J.; Ambroise, J. New applications of calcium sulfoaluminate cement. Cem. Concr. Res. 2004, 34, 671–676. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, H.; Wang, W.; Jia, M.; Che, X. Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material. J. Hazard Mater. 2020, 385, 121580. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, G.; Wu, C.; Li, J.; Wu, S.; Jiang, W.; Wang, X.; Wang, W.; Feng, M. Investigation of hierarchical porous cold bonded lightweight aggregates produced from red mud and solid-waste-based cementitious material. Constr. Build. Mater. 2021, 308, 124990. [Google Scholar] [CrossRef]
- Ge, Z.; Yuan, H.; Sun, R.; Zhang, H.; Wang, W.; Qi, H. Use of green calcium sulphoaluminate cement to prepare foamed concrete for road embankment: A feasibility study. Constr. Build. Mater. 2020, 237, 117791. [Google Scholar] [CrossRef]
- Álvarez-Pinazo, G.; Santacruz, I.; León-Reina, L.; Aranda, M.A.G.; De la Torre, A.G. Hydration Reactions and Mechanical Strength Developments of Iron-Rich Sulfobelite Eco-cements. Ind. Eng. Chem. Res. 2013, 52, 16606–16614. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Scholten, T.; Scrivener, K.L.; Ben Haha, M.; Wolter, A. Formation, composition and stability of ye’elimite and iron-bearing solid solutions. Cem. Concr. Res. 2020, 131, 106009. [Google Scholar] [CrossRef]
- Idrissi, M.; Diouri, A.; Damidot, D.; Greneche, J.M.; Talbi, M.A.; Taibi, M. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase. Cem. Concr. Res. 2010, 40, 1314–1319. [Google Scholar] [CrossRef]
- Guo, Y.; Su, M.; Deng, J.; Wang, Y. A study on hydration characteristics of ferrite phase in ferro aluminate cement. J. Chin. CreamSoc. 1989, 17, 296–301. [Google Scholar]
- Wu, S.; Yao, X.; Ren, C.; Yao, Y.; Zhang, C.; Wu, C.; Wang, W. Effect of iron on the preparation of iron-rich calcium sulfoatablluminate cement using gypsum as the sole calcium oxide source and its incorporation into mineral phases. Constr. Build. Mater. 2021, 290, 123214. [Google Scholar] [CrossRef]
- Wang, Y.; Su, M.; Zhang, L. Sulphoaluminate Cement; Beijing University of Technology Press: Beijing, China, 1999. [Google Scholar]
- Chen, D.; Feng, X.; Long, S. The influence of ferric oxide on the properties of 3CaO · 3Al2O3 · CaSO4. Thermochim. Acta 1993, 215, 157–169. [Google Scholar] [CrossRef]
- Yao, X.; Yang, S.; Dong, H.; Wu, S.; Liang, X.; Wang, W. Effect of CaO content in raw material on the mineral composition of ferric-rich 1 sulfoaluminate clinker. Constr. Build. Mater. 2020, 263, 120431. [Google Scholar] [CrossRef]
- Huang, Y.; Pei, Y.; Qian, J.; Gao, X.; Liang, J.; Duan, G.; Zhao, P.; Lu, L.; Cheng, X. Bauxite free iron rich calcium sulfoaluminate cement: Preparation, hydration and properties. Constr. Build. Mater. 2020, 249, 118774. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Schmitt, D.; Ben Haha, M. Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cem. Concr. Res. 2014, 59, 87–95. [Google Scholar] [CrossRef]
- Yao, X.; Yang, S.; Huang, Y.; Wu, S.; Yao, Y.; Wang, W. Effect of CaSO4 batching in raw material on the iron-bearing mineral transition of ferric-rich sulfoaluminate cement. Constr. Build. Mater. 2020, 250, 118783. [Google Scholar] [CrossRef]
- Ren, C.; Wang, W.; Li, G. Preparation of high-performance cementitious materials from industrial solid waste. Constr. Build. Mater. 2017, 152, 39–47. [Google Scholar] [CrossRef]
- Liu, N.; Chen, Q.; Dang, Y.; Li, F.; Zhang, J.; Li, X.; Qian, J. Partial Decomposition of Phosphogypsum for the Preparation of Belite Calcium Sulphoaluminate Cement. Bull. Chin. Ceram. Soc. 2016, 35, 3763–3769. [Google Scholar]
- Wu, S.; Yao, X.; Ren, C.; Li, J.; Xu, D.; Wang, W. Co-preparation of calcium sulfoaluminate cement and sulfuric acid through mass utilization of industrial by-product gypsum. J. Clean. Prod. 2020, 265, 121801. [Google Scholar] [CrossRef]
- Jeong, Y.; Hargis, C.; Chun, S.; Moon, J. The effect of water and gypsum content on strätlingite formation in calcium sulfoaluminate-belite cement pastes. Constr. Build. Mater. 2018, 166, 712–722. [Google Scholar] [CrossRef]
- García-Maté, M.; De la Torre, A.G.; León-Reina, L.; Losilla, E.R.; Aranda, M.A.G.; Santacruz, I. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cem. Concr. Compos. 2015, 55, 53–61. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wang, W.; Ge, Z.; Ren, C.; Yao, X.; Wu, S. Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes. Cem. Concr. Compos. 2020, 112, 103687. [Google Scholar] [CrossRef]
- Touzo, B.; Scrivener, K.L.; Glasser, F.P. Phase compositions and equilibria in the CaO–Al2O3–Fe2O3–SO3 system, for assemblages containing ye’elimite and ferrite Ca2(Al,Fe)O5. Cem. Concr. Res. 2013, 54, 77–86. [Google Scholar] [CrossRef]
- Ndzila, J.S.; Liu, S.; Jing, G.; Wang, S.; Ye, Z. The effect of Fe3+ ion substitution on the crystal structure of ye’elimite. Ceram. Silik. 2020, 64, 18–28. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, X.; Ma, S.; Chen, L.; Zhong, B. Effect of Fe2O3 on the formation of calcium sulpholuminate mineral. J. Chin. Ceram. Soc. 2007, 35, 485–488. [Google Scholar]
- Guo, Y.; Deng, J.; Su, M.; Wang, Y. A study on formation mechanism of ferrite phase in ferroaluminate cement. J. Chin. CreamSoc. 1988, 16, 481–488. [Google Scholar]
Sample | Targeted Minerals | Raw Material Proportion | ||||||
---|---|---|---|---|---|---|---|---|
C2S | C4AF | CaCO3 | SiO2 | Al2O3 | Fe2O3 | CaSO4·2H2O | ||
S00 | 50 | 30 | 20 | 55.69 | 7.67 | 21.47 | 4.83 | 10.34 |
S10 | 50 | 30 | 20 | 48.19 | 7.37 | 20.64 | 4.64 | 19.15 |
S20 | 50 | 30 | 20 | 41.25 | 7.10 | 19.88 | 4.47 | 27.31 |
S50 | 50 | 30 | 20 | 23.20 | 6.39 | 17.89 | 4.02 | 48.51 |
S80 | 50 | 30 | 20 | 8.43 | 5.81 | 16.26 | 3.65 | 65.85 |
S100 | 50 | 30 | 20 | 0 | 5.47 | 15.33 | 3.44 | 75.76 |
Scientific Names | Crystal System | Space Group | Abbrev. of Formula | Chemical Formula | ICSD |
---|---|---|---|---|---|
Ye’elimite-c | cubic | I-43m | C4A3-c | Ca4Al6SO16 | 9560 |
Ye’elimite-o | orthorhombic | Pcc2 | C4A3-o | Ca4Al6SO16 | 80,361 |
Belite-beta | Monoclinic | P21/n | C2S-beta | Ca2SiO4 | 79,550 |
Belite-al’ | orthorhombic | Pnma | C2S-al’ | Ca2SiO4 | 81,097 |
Srebrodolskite | orthorhombic | Pnma | C2F | Ca2Fe2O5 | 15,059 |
Brownmillerite | orthorhombic | Ibm2 | C4AF | Ca4Al2Fe2O10 | 9197 |
Gehlenite | Tetragonal | p-421m | C2AS | Ca2Al2SiO7 | 87,144 |
Anhydrite | orthorhombic | Amma | CaSO4 | 16,382 |
Content | Theo. | S00 | S10 | S20 | S50 | S80 | S100 |
---|---|---|---|---|---|---|---|
SO3 | 6.56 | 5.58 | 8.58 | 10.08 | 12.01 | 12.93 | 8.96 |
– | −0.98 | 2.02 | 3.52 | 5.46 | 6.37 | 2.40 | |
CaO | 42.53 | 43.22 | 41.12 | 40.07 | 38.71 | 38.07 | 40.85 |
– | 0.69 | −1.41 | −2.46 | −3.82 | −4.46 | −1.68 |
Sample | Mineralogical Composition | Fe/(Al + Fe)(wt.%) | Fe2O3 in Ye’elimite Phase(wt.%) |
---|---|---|---|
S00 | Ca4.0Al5.82 Fe0.17Si0.07S0.96O16 | 5.71 | 2.19 |
S50 | Ca3.94Al5.17 Fe0.45Si0.13S1.08O16 | 15.29 | 4.91 |
S80 | Ca3.93Al5.24Fe0.53Si0.13S1.12O16 | 17.34 | 6.89 |
S100 | Ca4.06Al5.09Fe0.46Si0.14S1.12O16 | 15.79 | 6.03 |
Sample | Mineralogical Composition | Fe2O3 in Belite Phase (wt.%) | SO3 in Belite Phase (wt.%) |
---|---|---|---|
S00 | Ca1.97Al0.08 Fe0.04Si0.85S0.05O4 | 1.86 | 2.32 |
S50 | Ca1.96Al0.01 Fe0.02Si0.81S0.12O4 | 0.93 | 5.56 |
S80 | Ca1.92Al0.01Fe0.01Si0.91S0.11O4 | 0.47 | 5.58 |
S100 | Ca1.87Al0.05Fe0.02Si0.84S0.14O4 | 0.93 | 4.65 |
Sample | Chemical Composition | Fe/Al | Abbreviations |
---|---|---|---|
S00 | Ca6.31Al2.98 Fe2.82O15 | 0.95 | C4.23AF0.95 |
S50 | Ca6.32Al2.68Fe2.98O15 | 1.12 | C4.71AF1.12 |
S80 | Ca6.46Al1.92Fe3.77O15 | 1.96 | C6.73AF1.96 |
S100 | Ca6.47Al1.82Fe3.87O15 | 2.12 | C7.11AF2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wu, C.; Zhang, C.; Wang, X.; Li, Y.; Wu, S.; Yao, Y.; Li, J.; Wang, W. Effect of CaO Sourced from CaCO3 or CaSO4 on Phase Formation and Mineral Composition of Iron-Rich Calcium Sulfoaluminate Clinker. Materials 2023, 16, 643. https://doi.org/10.3390/ma16020643
Jiang W, Wu C, Zhang C, Wang X, Li Y, Wu S, Yao Y, Li J, Wang W. Effect of CaO Sourced from CaCO3 or CaSO4 on Phase Formation and Mineral Composition of Iron-Rich Calcium Sulfoaluminate Clinker. Materials. 2023; 16(2):643. https://doi.org/10.3390/ma16020643
Chicago/Turabian StyleJiang, Wen, Changliang Wu, Chao Zhang, Xujiang Wang, Yuzhong Li, Shuang Wu, Yonggang Yao, Jingwei Li, and Wenlong Wang. 2023. "Effect of CaO Sourced from CaCO3 or CaSO4 on Phase Formation and Mineral Composition of Iron-Rich Calcium Sulfoaluminate Clinker" Materials 16, no. 2: 643. https://doi.org/10.3390/ma16020643
APA StyleJiang, W., Wu, C., Zhang, C., Wang, X., Li, Y., Wu, S., Yao, Y., Li, J., & Wang, W. (2023). Effect of CaO Sourced from CaCO3 or CaSO4 on Phase Formation and Mineral Composition of Iron-Rich Calcium Sulfoaluminate Clinker. Materials, 16(2), 643. https://doi.org/10.3390/ma16020643