Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystal Growth and Chemical Analysis
2.2. Methods
3. Results and Discussion
3.1. Crystal Structure
3.2. UV–Vis Diffuse Reflectance Spectra and Optical Band Gap
3.3. Magnetic Properties
3.4. Electrical Studies
3.5. Dielectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sczancoski, J.C.; Bomio, M.D.R.; Cavalcante, L.S.; Joya, M.R.; Pizani, P.S.; Varela, J.A.; Longo, E.; Siu Li, M.; Andrés, J.A. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. J. Phys. Chem. C 2009, 113, 5812–5822. [Google Scholar] [CrossRef]
- Boulon, G. Fifty years of advances in solid-state laser materials. Opt. Mater. 2012, 34, 499–512. [Google Scholar] [CrossRef]
- Guzik, M.; Tomaszewicz, E.; Guyot, Y.; Legendziewicz, J.; Boulon, G. Structural and spectroscopic characterizations of two promising Nd-doped monoclinic or tetragonal laser tungstates. J. Mat. Chem. 2012, 22, 14896–14906. [Google Scholar] [CrossRef]
- Rushbrooke, J.G.; Ansorge, R.E. Optical fibre readout and performance of small scintillating crystals for a fine-grained gamma detector. Nucl. Instrum. Methods 1989, 280, 83–90. [Google Scholar] [CrossRef]
- Xi, H.-H.; Zhou, D.; He, B.; Xie, H.-D. Microwave dielectric properties of scheelite structured PbMoO4 ceramic with ultralow sintering temperature. J. Am. Ceram. Soc. 2014, 97, 1375–1378. [Google Scholar] [CrossRef]
- Tomaszewicz, E.; Piątkowska, M.; Pawlikowska, M.; Groń, T.; Oboz, M.; Sawicki, B.; Urbanowicz, P. New vacancied and Dy3+-doped molybdates e their structure, thermal stability, electrical and magnetic properties. Ceram. Int. 2016, 42, 18357–18367. [Google Scholar] [CrossRef]
- Golestaneh, M. Degradation of organic pollutant in waste water via CdMoO4 nanostructures as an effective photocatalyst; ultrasound-assisted preparation and characterization. J. Nanostruct. 2019, 9, 623–629. [Google Scholar]
- Eghbali-Arani, M.; Pourmasoud, S.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Ameri, V.; Sobhani-Nasab, A. Optimization and detailed stability study on coupling of CdMoO4 into BaWO4 for enhanced photodegradation and removal of organic contaminant. Arab. J. Chem. 2020, 13, 2425–2438. [Google Scholar] [CrossRef]
- Kobayashi, M.; Usuki, Y.; Ishii, M.; Senguttuvan, N.; Tanji, K.; Chiba, M.; Hara, K.; Takano, H.; Nikl, M.; Bohacek, P.; et al. Significant improvement of PbWO4 scintillating crystals by doping with trivalent ions. Nucl. Instrum. Methods Phys. Res. A 1999, 434, 412–423. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Henry, S.; Kraus, H.; Solskii, I. Temperature dependence of CaMoO4 scintillation properties. Nucl. Instrum. Methods Phys. Res. A 2007, 583, 350–355. [Google Scholar] [CrossRef]
- Ishii, M.; Harada, K.; Kobayashi, M.; Usuki, Y.; Yazawa, T. Mechanical properties of PbWO4 scintillating crystals. Nucl. Instrum. Methods Phys. Res. A 1996, 376, 203–207. [Google Scholar] [CrossRef]
- Annenkov, A.N.; Auffray, E.; Chipaux, R.; Drobychev, G.Y.; Fedorov, A.A.; Géléoc, M.; Golubev, N.A.; Korzhik, M.V.; Lecoq, P.; Lednev, A.A.; et al. Systematic study of the short-term instability of PbWO4 scintillator parameters under irradiation. Radiat. Meas. 1998, 29, 27–38. [Google Scholar] [CrossRef]
- Kobayashi, M.; Usuki, Y.; Ishii, M.; Itoh, M. Significant increase in fast scintillation component from PbWO4 by annealing. Nucl. Instrum. Methods Phys. Res. A 2005, 537, 312–316. [Google Scholar] [CrossRef]
- Hossain, M.K.; Ahmed, M.H.; Khan, M.I.; Miah, S.; Hossain, S. Recent Progress of Rare Earth Oxides for Sensor, Detector, and Electronic Device Applications: A Review. ACS Appl. Electron. Mater. 2021, 3, 4255–4283. [Google Scholar] [CrossRef]
- Rubel, M.H.K.; Hossain, M.K. Crystal Structures and Properties of Nanomagnetic Materials in eBook: Fundamentals of Low Dimensional Magnets; CRC Press: Boca Raton, FL, USA, 2022; p. 183. [Google Scholar]
- Anik, M.I.; Hossain, M.K.; Hossain, I.; Ahmed, I.; Doha, R.M. 18—Biomedical Applications of Magnetic Nanoparticles in the Book: Magnetic Nanoparticle-Based Hybrid Materials Fundamentals and Applications; Woodhead Publishing Ltd.: Cambridge, UK, 2021; p. 463. [Google Scholar]
- Zhang, Y.; Holzwarth, N.A.W.; Williams, R.T. Electronic band structures of the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Phys. Rev. B 1998, 57, 12738–12750. [Google Scholar] [CrossRef]
- Hashim, M.; Hu, C.; Wang, X.; Li, X.; Guo, D. Synthesis and photocatalytic property of lead molybdate dendrites with exposed (0 0 1) facet. Appl. Surf. Sci. 2012, 258, 5858–5862. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Q.; Chen, H.; Peng, T. Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties. Cryst. Eng. Comm. 2011, 13, 2785–2791. [Google Scholar] [CrossRef]
- Groń, T.; Piątkowska, M.; Tomaszewicz, E.; Sawicki, B.; Urbanowicz, P.; Duda, H. Electrical and optical properties of new Pr3+-doped PbWO4 ceramics. Mater. Sci.-Pol. 2018, 36, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Kwolek, P.; Tokarski, T.; Łokcik, T.; Szaciłowski, K. Novel, microwave assisted route of synthesis of binary oxides semiconducting phases—PbMoO4 and PbWO4. Arch. Metall. Mater. 2013, 58, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Piątkowska, M.; Tomaszewicz, E. Synthesis, structure and thermal stability of new scheelite-type Pb1−3x▯xPr2x(MoO4)1−3x(WO4)3x ceramic materials. J. Therm. Anal. Cal. 2016, 126, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Kukuła, Z.; Maciejkowicz, M.; Tomaszewicz, E.; Pawlus, S.; Oboz, M.; Groń, T.; Guzik, M. Electric relaxation of superparamagnetic Gd-doped lead molybdato-tungstates. Ceram. Int. 2019, 45, 4437–4447. [Google Scholar] [CrossRef]
- Groń, T.; Maciejkowicz, M.; Tomaszewicz, E.; Guzik, M.; Oboz, M.; Sawicki, B.; Pawlus, S.; Nowok, A.; Kukuła, Z. Combustion synthesis, structural, magnetic and dielectric properties of Gd3+-doped lead molybdato-tungstates. J. Adv. Ceram. 2020, 9, 255–268. [Google Scholar] [CrossRef] [Green Version]
- CrysAlisPro; Version 1.171.38.41q; Rigaku Oxford Diffraction; Agilent Technologies Ltd.: Yarnton, UK, 2015.
- Sheldric, G.M. Crystal structure refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groń, T.; Krok-Kowalski, J.; Duda, H.; Mydlarz, T.; Gilewski, A.; Walczak, J.; Filipek, E.; Bärner, K. Metamagnetism in the Cr2V4-xMoxO13+0.5x solid solutions. Phys. Rev. 1995, 51, 16021–16024. [Google Scholar] [CrossRef]
- Krok-Kowalski, J.; Groń, T.; Warczewski, J.; Mydlarz, T.; Okońska-Kozłowska, I. Ferrimagnetism and metamagnetism in Cd1-xCuxCr2S4 spinels. J. Magn. Magn. Mater. B 1997, 168, 129–138. [Google Scholar] [CrossRef]
- Morrish, A.H. Physical Principles of Magnetism; John Wiley & Sons, Inc.: New York, NY, USA, 1965; p. 47. [Google Scholar]
- Kubelka, P.; Munk, F. Ein Beitrag zur Optic der Farbanstriche. Z. Tech. Phys. 1931, 12, 593–601. [Google Scholar]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structures of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Sol. 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Sczancoski, J.C.; Albarici, V.C.; Matos, J.M.E.; Varela, J.A.; Longo, E. Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater. Sci. Eng. 2008, 150, 18–25. [Google Scholar] [CrossRef]
- Kwolek, P.; Pilarczyk, K.; Tokarski, T.; Łapczyńska, M.; Pacia, M.; Szaciłowski, K. Lead molybdate—A promising material for optoelectronics and photocatalysis. J. Mater. Chem. C 2015, 3, 2614–2623. [Google Scholar] [CrossRef]
- Groń, T.; Pacyna, A.W.; Malicka, E. Influence of temperature independent contribution of magnetic susceptibility on the Curie-Weiss law. Sol. State Phenom. 2011, 170, 213–218. [Google Scholar] [CrossRef]
- Sawicki, B.; Tomaszewicz, E.; Groń, T.; Berkowski, M.; Głowacki, M.; Oboz, M.; Kusz, J.; Pawlus, S. Dipole relaxation process and giant dielectric permittivity in Eu3+-doped CdMoO4 single crystal. J. Mater. 2021, 7, 845–857. [Google Scholar] [CrossRef]
- Groń, T.; Bosacka, M.; Filipek, E.; Pacześna, A.; Urbanowicz, P.; Sawicki, B.; Duda, H. Semiconducting properties of Cu2In3VO9 ceramic material. Ceram. Int. 2017, 43, 2456–2459. [Google Scholar] [CrossRef]
- Groń, T.; Blonska-Tabero, A.; Filipek, E.; Urbanowicz, P.; Sawicki, B.; Duda, H.; Stokłosa, Z. Electrical transport properties of M2FeV3O11 (M = Mg, Zn, Pb, Co, Ni) ceramics. Ceram. Int. 2017, 43, 6758–6764. [Google Scholar] [CrossRef]
- Sawicki, B.; Groń, T.; Tomaszewicz, E.; Duda, H.; Górny, K. Some optical and transport properties of a new subclass of ceramic tungstates and molybdates. Ceram. Int. 2015, 41, 13080–13089. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons, Inc.: New York, NY, USA, 1971; p. 641. [Google Scholar]
- Barnard, R.D. Thermoelectricity in Metals and Alloys; Taylor & Francis: London, UK, 1972. [Google Scholar]
- Trodahl, H.J. Thermopower of the superconducting cuprates. Phys. Rev. B 1995, 51, 6175. [Google Scholar] [CrossRef] [PubMed]
- Debye, P. Zur Theorie der spezifischen Wärmen. Ann. Phys. 1912, 344, 789–839. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Sundman, B. Calculation of Debye temperature for crystalline structures—A case study on Ti, Zr, and Hf. Acta Mater. 2001, 49, 947–961. [Google Scholar] [CrossRef]
- Groń, T.; Bärner, K.; Kleeberg, C.; Okońska-Kozłowska, I. The thermoelectric power of ferromagnetically ordered Cu1-xGaxCr2Se4 spinels. Physica B 1996, 225, 191–196. [Google Scholar] [CrossRef]
- Sawicki, B.; Karolewicz, M.; Tomaszewicz, E.; Oboz, M.; Groń, T.; Kukuła, Z.; Pawlus, S.; Nowok, A.; Duda, H. Effect of Gd3+ substitution on thermoelectric power factor of paramagnetic Co2+-doped calcium molybdato-tungstates. Materials 2021, 14, 3692. [Google Scholar] [CrossRef]
- Sawicki, B.; Tomaszewicz, E.; Guzik, M.; Groń, T.; Oboz, M.; Duda, H.; Pawlus, S.; Urbanowicz, P. Effect of Ca2+ site substitution on structural, optical, electrical and magnetic properties in Nd3+ and Mn2+-co-doped calcium molybdato-tungstates. Ceram. Int. 2023, 49, 944–955. [Google Scholar] [CrossRef]
x | Direction | C (emu⋅K/mol) | θ (K) | µeff (µB/f.u.) | peff | M0 (µB/f.u.) | χ0 (emu/mol) | b (emu⋅K/mol) |
---|---|---|---|---|---|---|---|---|
0.001 | [001] | 0.0044 | −33 | 0.188 | 0.114 | 0.0023 | 6.2134 × 10−5 | 0.0038 |
0.001 | [100] | 0.0077 | −51 | 0.249 | 0.114 | 0.0011 | −2.9396 × 10−5 | 0.0065 |
0.005 | [001] | 0.0137 | −33 | 0.331 | 0.256 | 0.0099 | 0 | 0.0122 |
0.005 | [100] | 0.0211 | −36 | 0.411 | 0.256 | 0.0110 | −2.2712 × 10−5 | 0.0187 |
x | Direction | a (µV/K2) | EF (eV) | TF (K) | Ea1 (eV) | Ea2 (eV) | Eg (eV) |
---|---|---|---|---|---|---|---|
0.001 | [001] | −1.824 | 0.048 | 557 | 0.005 | 0.78 | 2.78 |
0.001 | [100] | −2.035 | 0.043 | 499 | 0.006 | 0.72 | 2.74 |
0.005 | [001] | −1.514 | 0.040 | 464 | 0.011 | 0.73 | 2.50 |
0.005 | [100] | −1.712 | 0.036 | 418 | 0.008 | 0.69 | 2.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicki, B.; Tomaszewicz, E.; Groń, T.; Oboz, M.; Kusz, J.; Berkowski, M. Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals. Materials 2023, 16, 620. https://doi.org/10.3390/ma16020620
Sawicki B, Tomaszewicz E, Groń T, Oboz M, Kusz J, Berkowski M. Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals. Materials. 2023; 16(2):620. https://doi.org/10.3390/ma16020620
Chicago/Turabian StyleSawicki, Bogdan, Elżbieta Tomaszewicz, Tadeusz Groń, Monika Oboz, Joachim Kusz, and Marek Berkowski. 2023. "Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals" Materials 16, no. 2: 620. https://doi.org/10.3390/ma16020620
APA StyleSawicki, B., Tomaszewicz, E., Groń, T., Oboz, M., Kusz, J., & Berkowski, M. (2023). Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals. Materials, 16(2), 620. https://doi.org/10.3390/ma16020620