Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas
Abstract
:1. Introduction
2. Materials and Methods
2.1. LN Thinning Method
2.2. Sputtering of Metglas Films
2.3. Investigation of Metglas Films by TEM and XPS
2.4. Bidomain LN Preparation
2.5. ME Effect Measurements
3. Results and Discussions
3.1. LN Thinning Results
3.2. Composition and Structure of Metglas Films
3.3. ME Measurements and Sensitivity to AC Magnetic Field
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiebig, M. Revival of the Magnetoelectric Effect. J. Phys. D Appl. Phys. 2005, 38, R123–R152. [Google Scholar] [CrossRef]
- Liang, X.; Matyushov, A.; Hayes, P.; Schell, V.; Dong, C.; Chen, H.; He, Y.; Will-Cole, A.; Quandt, E.; Martins, P.; et al. Roadmap on Magnetoelectric Materials and Devices. IEEE Trans. Magn. 2021, 57, 400157. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Röbisch, V.; Salzer, S.; Urs, N.O.; Reermann, J.; Yarar, E.; Piorra, A.; Kirchhof, C.; Lage, E.; Höft, M.; Schmidt, G.U.; et al. Pushing the Detection Limit of Thin Film Magnetoelectric Heterostructures. J. Mater. Res. 2017, 32, 1009–1019. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Z.; Zhang, S.; Mao, Z.; Shen, Y.; Chu, Z. Review of Magnetoelectric Sensors. Actuators 2021, 10, 109. [Google Scholar] [CrossRef]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications. Measurement 2018, 116, 230–238. [Google Scholar] [CrossRef]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kislyuk, A.M.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Pakhomov, O.V.; Kholkin, A.L.; Sobolev, N.A. Magnetoelectric Metglas/Bidomain y + 140°-Cut Lithium Niobate Composite for Sensing FT Magnetic Fields. Appl. Phys. Lett. 2018, 112, 262906. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. Frequency Tunable Resonant Magnetoelectric Sensors for the Detection of Weak Magnetic Field. J. Micromech. Microeng. 2020, 30, 075009. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Reermann, J.; Durdaut, P.; Höft, M.; Schmidt, G.; Quandt, E.; Faupel, F. Influence of the Quality Factor on the Signal to Noise Ratio of Magnetoelectric Sensors Based on the Delta-E Effect. Appl. Phys. Lett. 2019, 114, 183504. [Google Scholar] [CrossRef]
- Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J.L.; Gerken, M.; Knöchel, R.; Quandt, E. Magnetoelectric Thin Film Composites with Interdigital Electrodes. Appl. Phys. Lett. 2013, 103, 32902. [Google Scholar] [CrossRef]
- Su, J.; Niekiel, F.; Fichtner, S.; Thormaehlen, L.; Kirchhof, C.; Meyners, D.; Quandt, E.; Wagner, B.; Lofink, F. AlScN-Based MEMS Magnetoelectric Sensor. Appl. Phys. Lett. 2020, 117, 132903. [Google Scholar] [CrossRef]
- Qu, P.; Qu, H.; Gollapudi, S.; Bidthanapally, R.; Srinivasan, G. Design and Fabrication of a MEMS Magnetic Sensor Utilizing Ferromagnetic-Piezoelectric Composites. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Dong, C.; Liang, X.; Gao, J.; Chen, H.; He, Y.; Wei, Y.; Zaeimbashi, M.; Matyushov, A.; Sun, C.; Sun, N.X. Thin Film Magnetoelectric Sensors Toward Biomagnetism: Materials, Devices, and Applications. Adv. Electron. Mater. 2022, 8, 2200013. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Celestin, S.J.; Wang, X.; Chen, H.; Ziemer, K.S.; Page, M.; McConney, M.E.; Jones, J.G.; Howe, B.M.; et al. Soft Magnetism, Magnetostriction, and Microwave Properties of Fe-Ga-C Alloy Films. IEEE Magn. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Dong, C.; Wei, Y.; Lin, X.; Athey, B.; Chen, Y.; Winter, A.; Stephen, G.M.; Heiman, D.; He, Y.; et al. Magnetostriction, Soft Magnetism, and Microwave Properties in Co-Fe-C Alloy Films. Phys. Rev. Appl. 2019, 12, 034011. [Google Scholar] [CrossRef]
- Thormählen, L.; Seidler, D.; Schell, V.; Munnik, F.; McCord, J.; Meyners, D. Sputter Deposited Magnetostrictive Layers for SAW Magnetic Field Sensors. Sensors 2021, 21, 8386. [Google Scholar] [CrossRef]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange Biasing of Magnetoelectric Composites. Nat. Mater. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Lou, J.; Insignares, R.E.; Cai, Z.; Ziemer, K.S.; Liu, M.; Sun, N.X. Soft Magnetism, Magnetostriction, and Microwave Properties of FeGaB Thin Films. Appl. Phys. Lett. 2007, 91, 182504. [Google Scholar] [CrossRef]
- O’Handley, R.C. Modern Magnetic Materials: Principles and Applications; John Wiley and Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Fiorillo, F. Measurement and Characterization of Magnetic Materials (Electromagnetism); Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krantz, M.C.; Gerken, M. Effect of Excitation Mode on the Magnetic Field Detection Limit of Magnetoelectric Composite Cantilevers. AIP Adv. 2020, 10, 045108. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Nan, T.; Sun, N.X.; Rinaldi, M. High Resolution Magnetometer Based on a High Frequency Magnetoelectric MEMS-CMOS Oscillator. J. Microelectromech. Syst. 2015, 24, 134–143. [Google Scholar] [CrossRef]
- Fetisov, L.Y.; Perov, N.S.; Fetisov, Y.K.; Srinivasan, G.; Petrov, V.M. Resonance Magnetoelectric Interactions in an Asymmetric Ferromagnetic-Ferroelectric Layered Structure. J. Appl. Phys. 2011, 109, 53908. [Google Scholar] [CrossRef]
- Yaojin, W.; David, G.; David, B.; Junqi, G.; Menghui, L.; Jiefang, L.; Dwight, V.; Gao, J.; Das, J.; Xing, Z.; et al. Comparison of Noise Floor and Sensitivity for Different Magnetoelectric Laminates. J. Appl. Phys. 2015, 122, 84509. [Google Scholar] [CrossRef]
- Nakamura, K.; Shimizu, H. Local Domain Inversion in Ferroelectric Crystals and Its Application to Piezoelectric Devices. In Proceedings of the Proceedings, Montreal, QC, Canada, 3–6 October 1989; pp. 309–318. [Google Scholar]
- Kubasov, I.V.; Kislyuk, A.M.; Turutin, A.V.; Malinkovich, M.D.; Parkhomenko, Y.N. Bidomain Ferroelectric Crystals: Properties and Prospects of Application. Russ. Microelectron. 2021, 50, 571–616. [Google Scholar] [CrossRef]
- Kubasov, I.V.; Timshina, M.S.; Kiselev, D.A.; Malinkovich, M.D.; Bykov, A.S.; Parkhomenko, Y.N. Interdomain Region in Single-Crystal Lithium Niobate Bimorph Actuators Produced by Light Annealing. Crystallogr. Rep. 2015, 60, 700–705. [Google Scholar] [CrossRef]
- Kubasov, I.V.; Kislyuk, A.M.; Bykov, A.S.; Malinkovich, M.D.; Zhukov, R.N.; Kiselev, D.A.; Ksenich, S.V.; Temirov, A.A.; Timushkin, N.G.; Parkhomenko, Y.N. Bidomain Structures Formed in Lithium Niobate and Lithium Tantalate Single Crystals by Light Annealing. Crystallogr. Rep. 2016, 61, 258–262. [Google Scholar] [CrossRef]
- Kubasov, I.V.; Popov, A.V.; Bykova, A.S.; Temirov, A.A.; Kislyuk, A.M.; Zhukov, R.N.; Kiselev, D.A.; Chichkov, M.V.; Malinkovich, M.D.; Parkhomenko, Y.N. Deformation Anisotropy of Y + 128°-Cut Single Crystalline Bidomain Wafers of Lithium Niobate. Russ. Microelectron. 2017, 46, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Kubasov, I.; Kislyuk, A.; Malinkovich, M.; Temirov, A.; Ksenich, S.V.; Kiselev, D.; Bykov, A.; Parkhomenko, Y.N. A Novel Vibration Sensor Based on Bidomain Lithium Niobate Crystal. Acta Phys. Pol. A 2018, 134, 106–108. [Google Scholar] [CrossRef]
- Nakamura, K.; Ando, H.; Shimizu, H. Partial Domain Inversion in LiNbO3 Plates and Its Applications to Piezoelectric Devices. In Proceedings of the IEEE, Williamsburg, VA, USA, 17–19 November 1986; pp. 719–722. [Google Scholar]
- Vidal, J.V.; Turutin, A.V.; Kubasov, I.V.; Kislyuk, A.M.; Kiselev, D.A.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Sobolev, N.A.; Kholkin, A.L. Dual Vibration and Magnetic Energy Harvesting with Bidomain LiNbO3-Based Composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.V.; Turutin, A.V.; Kubasov, I.V.; Kislyuk, A.M.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Pakhomov, O.V.; Sobolev, N.A.; Kholkin, A.L. Low-Frequency Vibration Energy Harvesting with Bidomain LiNbO3 Single Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.V.; Turutin, A.V.; Kubasov, I.V.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Kholkin, A.L.; Sobolev, N.A. Equivalent Magnetic Noise in Magnetoelectric Laminates Comprising Bidomain LiNbO3 Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1102–1119. [Google Scholar] [CrossRef]
- Turutin, A.v.; Kubasov, I.v.; Kislyuk, A.M.; Kuts, V.v.; Malinkovich, M.D.; Parkhomenko, Y.N.; Sobolev, N.A. Ultra-Sensitive Magnetoelectric Sensors of Magnetic Fields for Biomedical Applications. Nanobiotechnol. Rep. 2022, 17, 261–289. [Google Scholar] [CrossRef]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kislyuk, A.M.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Kholkin, A.L.; Sobolev, N.A. Low-Frequency Magnetic Sensing by Magnetoelectric Metglas/Bidomain LiNbO3 Long Bars. J. Phys. D Appl. Phys. 2018, 51, 214001. [Google Scholar] [CrossRef]
- Bichurin, M.; Petrov, R.; Sokolov, O.; Leontiev, V.; Kuts, V.; Kiselev, D.; Wang, Y. Magnetoelectric Magnetic Field Sensors: A Review. Sensors 2021, 21, 6232. [Google Scholar] [CrossRef]
- Nassau, K.; Levinstein, H.J.; Loiacono, G.M. The Domain Structure and Etching of Ferroelectric Lithium Niobate. Appl. Phys. Lett. 1965, 6, 228–229. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Mendialdua, J.; Casanova, R.; Rueda, F.; Rodríguez, A.; Quiñones, J.; Alarcón, L.; Escalante, E.; Hoffmann, P.; Taebi, I.; Jalowiecki, L. X-Ray Photoelectron Spectroscopy Studies of Laterite Standard Reference Material. J. Mol. Catal. A Chem. 2005, 228, 151–162. [Google Scholar] [CrossRef]
- Moddeman, W.E.; Burke, A.R.; Bowling, W.C.; Foose, D.S. Surface Oxides of Boron and B12O2 as Determined by XPS. Surf. Interface Anal. 1989, 14, 224–232. [Google Scholar] [CrossRef]
- Marauska, S.; Jahns, R.; Greve, H.; Quandt, E.; Knöchel, R.; Wagner, B. MEMS Magnetic Field Sensor Based on Magnetoelectric Composites. J. Micromechan. Microeng. 2012, 22, 065024. [Google Scholar] [CrossRef]
- Loyau, V.; Morin, V.; Chaplier, G.; LoBue, M.; Mazaleyrat, F. Magnetoelectric Effect in Layered Ferrite/PZT Composites. Study of the Demagnetizing Effect on the Magnetoelectric Behavior. J. Appl. Phys. 2015, 117, 184102. [Google Scholar] [CrossRef] [Green Version]
- Zuo, S.; Schmalz, J.; Ozden, M.-O.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Turutin, A.V.; Vidal, J.V.; Kubasov, I.V.; Kislyuk, A.M.; Kiselev, D.A.; Malinkovich, M.D.; Parkhomenko, Y.N.; Kobeleva, S.P.; Kholkin, A.L.; Sobolev, N.A. Highly Sensitive Magnetic Field Sensor Based on a Metglas/Bidomain Lithium Niobate Composite Shaped in Form of a Tuning Fork. J. Magn. Magn. Mater. 2019, 486, 165209. [Google Scholar] [CrossRef]
- Salzer, S.; Jahns, R.; Piorra, A.; Teliban, I.; Reermann, J.; Höft, M.; Quandt, E.; Knöchel, R. Tuning Fork for Noise Suppression in Magnetoelectric Sensors. Sens. Actuators A Phys. 2016, 237, 91–95. [Google Scholar] [CrossRef]
- Jahns, R.; Greve, H.; Woltermann, E.; Quandt, E.; Knöchel, R. Sensitivity Enhancement of Magnetoelectric Sensors through Frequency-Conversion. Sens. Actuators A Phys. 2012, 183, 16–21. [Google Scholar] [CrossRef]
Air Pressure in the Abrasive Feeding System, kPa | Ra, µm | Rt, µm | Machining Rate/Scan, µm |
---|---|---|---|
450 | 0.75 | 13.10 | 18.43 |
500 | 0.82 | 12.14 | 20.23 |
550 | 0.80 | 10.05 | 22.69 |
600 | 2.33 | 31.96 | 27.21 |
ME MEMS Structure | α, V/(cm·Oe) | Conversion Coefficient, V/Oe | fr, Hz | Q-Factor | Sensitivity, pT/Hz1/2 | Ref. |
---|---|---|---|---|---|---|
SiO2/AlN/FeCoSiB | 800 | 0.08 | 2400 | 74 | 100 | [43] |
poly-Si/AlN/FeCoSiB | 734 | 0.0734 | 8965 | 592 | 62 | [11] |
poly-Si/AlScN/FeCoSiB | 1334 | 0.1334 | 8002 | 600 | 60 | [11] |
poly-Si/AlN/FeCoSiB | 756 | 0.0378 | 7760 | 2217 | 175 | [45] |
b-LN/Fe70Co8Si12B10 | 492 | 3.936 | 3065 | 520 | 12 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turutin, A.V.; Skryleva, E.A.; Kubasov, I.V.; Milovich, F.O.; Temirov, A.A.; Raketov, K.V.; Kislyuk, A.M.; Zhukov, R.N.; Senatulin, B.R.; Kuts, V.V.; et al. Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas. Materials 2023, 16, 484. https://doi.org/10.3390/ma16020484
Turutin AV, Skryleva EA, Kubasov IV, Milovich FO, Temirov AA, Raketov KV, Kislyuk AM, Zhukov RN, Senatulin BR, Kuts VV, et al. Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas. Materials. 2023; 16(2):484. https://doi.org/10.3390/ma16020484
Chicago/Turabian StyleTurutin, Andrei V., Elena A. Skryleva, Ilya V. Kubasov, Filipp O. Milovich, Alexander A. Temirov, Kirill V. Raketov, Aleksandr M. Kislyuk, Roman N. Zhukov, Boris R. Senatulin, Victor V. Kuts, and et al. 2023. "Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas" Materials 16, no. 2: 484. https://doi.org/10.3390/ma16020484
APA StyleTurutin, A. V., Skryleva, E. A., Kubasov, I. V., Milovich, F. O., Temirov, A. A., Raketov, K. V., Kislyuk, A. M., Zhukov, R. N., Senatulin, B. R., Kuts, V. V., Malinkovich, M. D., Parkhomenko, Y. N., & Sobolev, N. A. (2023). Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas. Materials, 16(2), 484. https://doi.org/10.3390/ma16020484