Interface Structure, Dielectric Behavior and Temperature Stability of Ba(Mg1/3Ta2/3)O3/PbZr0.52Ti0.48O3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Precursor Solution
2.2.1. Preparation of PZT Precursor Solution
2.2.2. Preparation of BMT Precursor Solution
2.3. Preparation of BMT/PZT Thin Films
2.4. Characterization
3. Results and Discussion
3.1. Structure and Morphology Analysis
3.2. Dielectric Behavior Analysis
3.3. Dielectric Tunability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuentz, H.; Wague, B.; Vaxelaire, N.; Demange, V.; Poulain, C.; Guilloux-Viry, M.; Rhun, G.L. Effect of electrically induced cracks on the properties of PZT thin film capacitors. Appl. Phys. Lett. 2022, 121, 232901. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Wang, X.; Liu, Y.; Zhou, J. Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings. Coatings 2021, 11, 944. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, L.; Wang, L.; Wang, F.; Pan, G.B. A flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. C 2019, 7, 4760–4769. [Google Scholar] [CrossRef]
- Tan, G.; Maruyama, K.; Kanamitsu, Y.; Nishioka, S.; Ozaki, T.; Umegaki, T.; Hida, H.; Kanno, I. Crystallographic contributions to piezoelectric properties in PZT thin films. Sci. Rep. 2019, 9, 7309. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Glinsek, S.; Defay, E. Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Appl. Phys. Rev. 2021, 8, 041315. [Google Scholar] [CrossRef]
- Liu, S.; Zou, D.; Yu, X.; Wang, Z.; Yang, Z. Transfer-free PZT thin films for flexible Nanogenerators derived from a single-step modified sol–gel process on 2D mica. ACS Appl. Mater. Interfaces 2020, 12, 54991–54999. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.H.; Lin, S.J.; Liu, K.S.; Lin, I.N. Pulsed laser deposited Ba(Mg1/3Ta2/3)O3 microwave dielectric thin films. Integr. Ferroelectr. 2003, 55, 915–922. [Google Scholar] [CrossRef]
- Ning, P.F.; Li, L.X.; Zhang, P.; Xia, W.S. Raman scattering, electronic structure and microwave dielectric properties of Ba ([Mg1−xZnx]1/3Ta2/3)O3 ceramics. Ceram. Int. 2012, 38, 1391–1398. [Google Scholar] [CrossRef]
- Lv, P.; Yang, C.; Qian, J.; Wu, H.; Huang, S.; Cheng, X.; Cheng, Z. Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv. Energy Mater. 2020, 10, 1904229. [Google Scholar] [CrossRef]
- Sharma, S.; Tomar, M.; Puri, N.K.; Gupta, V. Enhanced dielectric properties of multilayered BiFeO3/BaTiO3 capacitors deposited by pulsed laser deposition. AIP Conf. Proc. 2016, 1724, 020098. [Google Scholar]
- Liu, Y.; Tan, G.; Chai, Z.; Lv, L.; Yue, Z.; Xue, M.; Ren, H.; Xia, A. Dielectric relaxation and resistive switching of Bi0.96Sr0.04Fe0.98Co0.02O3/CoFe2O4 thin films with different thicknesses of the Bi0.96Sr0.04Fe0.98Co0.02O3 layer. Ceram. Int. 2019, 45, 3522–3530. [Google Scholar] [CrossRef]
- Xu, N.; Pu, Y.P.; Wang, Z. Large dielectric constant and Maxwell-Wagner effects in BaTiO3/Cu composites. J. Am. Ceram. Soc. 2012, 95, 999–1003. [Google Scholar]
- Ho Nyung, L.; Christen, H.M.; Chisholm, M.F.; Rouleau, C.M.; Lowndes, D.H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 2005, 433, 395–399. [Google Scholar]
- Sun, B.; Guo, M.; Wu, M.; Ma, Z.; Gao, W.W.; Sun, H.N.; Lou, X.J. Large enhancement of energy storage density in (Pb0.92La0.08)(Zr0.65Ti0.35)O3/PbZrO3 multilayer thin film. Ceram. Int. 2019, 45, 20046–20050. [Google Scholar] [CrossRef]
- Lee, B.D.; Hong, R.L.; Yoon, K.H.; Kang, D.H. Effect of stacking layers on the microwave dielectric properties of MgTiO3/CaTiO3 multilayered thin films. J. Am. Ceram. Soc. 2005, 88, 1197–1200. [Google Scholar] [CrossRef]
- Song, B.; Zhu, K.; Yan, H.; Xu, L.; Shen, B.; Zhai, J. High energy storage density with high power density in Bi0.2Sr0.7TiO3/ BiFeO3 multilayer thin films. J. Mater. Chem. C 2021, 9, 4652–4660. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, W.; Xu, S.; Gu, H.; Shen, B.; Zhai, J. Impact of multiple interfaces on the thermal annealing of Sb70Se30/Ti thin films. J. Mater. Sci. Mater. El. 2023, 34, 572. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Xiao, X.H.; Peng, T.C.; Jiang, C.Z.; Lin, Y.H.; Nan, C.W. Large reversible electric-voltage manipulation of magnetism in NiFe/BaTiO3 heterostructures at room temperature. J. Phys. D Appl. Phys. 2010, 43, 082002. [Google Scholar] [CrossRef]
- He, H.C.; Ma, J.; Lin, Y.H.; Nan, C.W. Enhanced magnetoelectric properties in Pb(Zr,Ti)O3-CoFe2O4 layered thin films with LaNiO3 as a buffer layer. J. Phys. D Appl. Phys. 2009, 42, 095008. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Lin, Y.; Nan, C. Evidence for stress-mediated magnetoelectric coupling in multiferroic bilayer films from magnetic-field-dependent Raman scattering. Phys. Rev. B 2009, 79, 180406. [Google Scholar] [CrossRef]
- Hu, C.W.; Yen, C.M.; Feng, Y.C.; Chen, L.H.; Liao, B.Z.; Chen, S.C.; Liao, M.H. Multi-ferroic properties on BiFeO3/BaTiO3 multilayer thin film structures with the strong magneto-electric effect for the application of magneto-electric devices. Coatings 2021, 11, 66. [Google Scholar] [CrossRef]
- Burdin, D.; Ekonomov, N.A.; Vopson, M.M.; Fetisov, Y.K. Enhancement of the nonlinear magnetoelectric effect in a ferromagnet-piezoelectric heterostructure due to nonlinearity of magnetization. Appl. Phys. Lett. 2021, 118, 132901. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, J.; Chen, W.; Shen, J.; Cai, S.T. Study on the interface coupling effect in Pb(Zr0.52Ti0.48)O3/Ba(Mg1/3Ta2/3)O3 thin films. J. Mater. Sci. Mater. El. 2019, 30, 14490–14494. [Google Scholar] [CrossRef]
- Zou, D.; Liu, S.; Zhang, C.; Hong, Y.; Zhang, G.; Yang, Z. Flexible and translucent PZT films enhanced by the compositionally graded heterostructure for human body monitoring. Nano Energy 2021, 85, 105984. [Google Scholar] [CrossRef]
- Zhou, J.; Li, R.R.; Li, R.; Chen, W. Effect of heterogeneous interface on the microwave dielectric properties of Ca(Mg1/3Nb2/3)O3/CaTiO3 thin films. Appl. Surf. Sci. 2012, 259, 29–33. [Google Scholar] [CrossRef]
- Wolf, R.A.; Trolier-McKinstry, S. Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 2004, 95, 1397–1406. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Ivashchenko, V.I.; Skrynskyy, P.L.; Bondar, O.V.; Konarski, P.; Załęski, K.; Jurga, S.; Coy, E. Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure. Compos. Part B Eng. 2018, 142, 85–94. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Maksakova, O.; Buranich, V.; Konarski, P.; Bondariev, V.; Zukowski, P.; Skrynskyy, P.; Sinelnichenko, A.; Shelest, I.; et al. Comparative measurements and analysis of the mechanical and electrical properties of Ti-Zr-C nanocomposite: Role of stoichiometry. Measurement 2021, 176, 109223. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, J.; Chen, W.; Shen, J.; Lv, C.; Qi, Y.Y. Detection of residual stress in Ba(Mg1/3Ta2/3)O3 thin films by nanoindentation technique. Ceram. Int. 2015, 41, 11632–11636. [Google Scholar] [CrossRef]
- Lee, B.D.; Lee, H.R.; Yoon, K.H.; Kang, D.H. Effect of stacking layers on the microwave dielectric properties of (Li0.5Sm0.5)TiO3/CaTiO3 thin films. Jpn. J. Appl. Phys. 2005, 44, 1326–1328. [Google Scholar] [CrossRef]
- Dong, H.; Mao, J.; Hui, X.; Du, H.; Chen, M.; Ding, Q. Predicting dielectric tunability of compositionally-graded barium strontium titanate thin films on metal substrates by thermodynamic modeling. Ceram. Int. 2020, 47, 4688–4693. [Google Scholar] [CrossRef]
- Nedelcu, L.; Mandache, N.B.; Toacsan, M.I.; Vlaicu, A.M.; Banciu, M.G.; Ioachim, A.; Gherendi, F.; Luculescu, C.R.; Nistor, M. Dielectric properties of Ba(Zn1/3Ta2/3)O3 thin films on Pt-coated Si substrates. Thin Solid Films 2012, 522, 112–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Liu, Y.; Zhou, J.; Zhao, H.; Qin, Z. Interface Structure, Dielectric Behavior and Temperature Stability of Ba(Mg1/3Ta2/3)O3/PbZr0.52Ti0.48O3 Thin Films. Materials 2023, 16, 6358. https://doi.org/10.3390/ma16196358
Wu Z, Liu Y, Zhou J, Zhao H, Qin Z. Interface Structure, Dielectric Behavior and Temperature Stability of Ba(Mg1/3Ta2/3)O3/PbZr0.52Ti0.48O3 Thin Films. Materials. 2023; 16(19):6358. https://doi.org/10.3390/ma16196358
Chicago/Turabian StyleWu, Zhi, Yifei Liu, Jing Zhou, Hong Zhao, and Zhihui Qin. 2023. "Interface Structure, Dielectric Behavior and Temperature Stability of Ba(Mg1/3Ta2/3)O3/PbZr0.52Ti0.48O3 Thin Films" Materials 16, no. 19: 6358. https://doi.org/10.3390/ma16196358
APA StyleWu, Z., Liu, Y., Zhou, J., Zhao, H., & Qin, Z. (2023). Interface Structure, Dielectric Behavior and Temperature Stability of Ba(Mg1/3Ta2/3)O3/PbZr0.52Ti0.48O3 Thin Films. Materials, 16(19), 6358. https://doi.org/10.3390/ma16196358