The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Calcium Preparation
2.2.2. Hydroxyapatite Synthesis
2.3. Characterization
2.3.1. Structure Characterization
2.3.2. Morphology Characterization
2.3.3. Physicochemical Properties
3. Results
3.1. Hydroxyapatite Synthesis
3.2. Characterization
3.2.1. Characterization of HA Structure Using XRD
3.2.2. Characterization of HA Morphology Using SEM
3.2.3. Physicochemical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lara, W.O.; Ochoa, S.L.; Beltran, C.E.G. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef] [PubMed]
- Pandharipande, S.L.; Sondawale, S.S. Review on synthesis of hydroxyapatite and its bio-composites. Int. J. Sci. Eng. Technol. 2016, 5, 3410–3416. [Google Scholar]
- Awasthi, S.; Pandey, S.K.; Arunan, E.; Srivastava, C. A Review on hydroxyapatite coatings for the biomedical applications: Experimental and theoretical perspectives. J. Mater. Chem. B. 2021, 9, 228–249. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Chang, J. Structure and properties of hydroxyapatite for biomedical applications. In Hydroxyapatite (Hap) for Biomedical Application; Woodhead Publishing: Sawston, UK, 2023; pp. 3–19. [Google Scholar]
- Lee, Y.J.; Jung, K.W.; Lee, S.Y.; Choi, J.W. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J. 2019, 369, 529–541. [Google Scholar]
- Farinas, C.S.; Coutinho, T.C.; Malafatti, J.O.D.; Paris, E.C.; Tardioli, P.W. Hydroxyapatite-CoFe2O4 magnetic nanoparticle composites for industrial enzyme immobilization, use, and recovery. ACS. Appl. Nano. Mater. 2020, 3, 12334–12345. [Google Scholar]
- Abdulrahman, I.; Tijani, H.I.; Mohammed, B.A.; Saidu, H.; Yusuf, H.; Jibrin, M.N.; Mohammed, S. From garbage to biomaterials: An overview on egg shell based hydroxyapatite. J. Mater. 2014, 2014, 802467. [Google Scholar] [CrossRef]
- Irwansyah, F.S.; Noviyanti, A.R.; Eddy, D.R.; Risdiana, R. Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 2022, 27, 5586. [Google Scholar] [CrossRef]
- Yeo, Y.; Lee, J.H. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015, 125, 75–84. [Google Scholar]
- Noviyanti, A.R.; Akbar, N.; Deawati, Y.; Ernawati, E.E.; Malik, Y.T.; Fauzia, R.P. A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors. Heliyon 2020, 6, e03655. [Google Scholar] [CrossRef]
- Cahyaningrum, S.E.; Herdayastuty, N.; Devina, B.; Supangat, D. Synthesis and characterization of hydroxyapatite powder by wet precipitation method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 299, 012039. [Google Scholar] [CrossRef]
- Wu, S.C.; Hsu, H.C.; Hsu, S.K.; Chang, Y.C.; Ho, W.F. Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. J. Asian Ceram Soc. 2016, 4, 85–90. [Google Scholar] [CrossRef]
- Bakan, F.; Laçin, O.; Sarac, H. A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 2013, 233, 295–302. [Google Scholar] [CrossRef]
- Shandilya, M.; Rai, R.; Singh, J. Review: Hydrothermal technology for smart materials. Adv. Appl. Ceram. 2016, 115, 354–376. [Google Scholar] [CrossRef]
- Fatah, S.K.; Kareem, M.M. Synthesis and characterisation of hydroxyapatite nanopowders by hydrothermal method. Zanco J. Pure Appl Sci. 2017, 29, s227–s233. [Google Scholar]
- Rial, R.; Hassan, N.; Liu, Z.; Ruso, J.M. The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. J. Mol. Liq. 2021, 343, 117598. [Google Scholar] [CrossRef]
- Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U.A.; Berugoda Arachchige, D.M.; Kumarasinghe, A.R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G.A. Urea-Hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 2017, 11, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, I.; Fahrani, D.; Harmawantika, T.; Sahroni, I.; Kamari, A.; Sa’bana Rahmatillah, C.; Nurillahi, R. Functionalization of hydroxyapatite derived from cockle (Anadara granosa) shells into hydroxyapatite–nano TiO2 for photocatalytic degradation of methyl violet. Sustain. Environ. Res. 2019, 1, 40. [Google Scholar] [CrossRef]
- Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018, 3, 278–314. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. Materials 2013, 6, 3840–3942. [Google Scholar] [CrossRef]
- Mawuntu, V.J.; Yusuf, Y. Porous structure engineering of bioceramic hydroxyapatite-based scaffolds using PVA, PVP, and PEO as polymeric porogens. J. Asian. Ceram. Soc. 2019, 7, 161–169. [Google Scholar] [CrossRef]
- Jalageri, M.B.; Kumar, G.C.M. Hydroxyapatite reinforced polyvinyl alcohol /polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels 2022, 8, 555. [Google Scholar] [CrossRef] [PubMed]
- Effendi, M.D.; Gustiono, D. Effect of porogen agent on microstructure of CaP granules using the gelation of alginate droplet formation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 857, 012026. [Google Scholar] [CrossRef]
- Yusuf, Y.; Sari, M.; Aminatun; Suciati, T.; Sari, Y.W. Porous carbonated hydroxyapatite-based paraffin wax nanocomposite scaffold for bone tissue engineering: A physicochemical properties and cell viability assay analysis. Coatings 2021, 11, 1189. [Google Scholar]
- Nie, L.; Han, Y.; Wei, Q.; Chang, P.; Hu, K.; Okoro, O.V.; Shavandi, A. Three-Dimensional printing of hydroxyapatite composites for biomedical application. Crystals 2021, 11, 353. [Google Scholar]
- Lett, J.A.; Sundareswari, M.; Ravichandran, K. Porous hydroxyapatite scaffolds for orthopedic and dental applications-the role of binders. Mater. Today Proc. 2016, 3, 1672–1677. [Google Scholar] [CrossRef]
- Munir, M.U.; Salman, S.; Javed, I.; Bukhari, S.N.A.; Ahmad, N.; Shad, N.A.; Aziz, F. Nano-hydroxyapatite as a delivery system: Overview and advancements. Artif. Cells Nanomed. Biotechnol. 2021, 49, 717–727. [Google Scholar] [CrossRef]
- Yusuf, A.; Noviyanti, A.R.; Muhammad, N.M. The effect of temperature synthesis on the purity and crystallinity of hydroxyapatite. Key Eng. Mater. 2020, 860, 228–233. [Google Scholar] [CrossRef]
- Abdullah, M.; Sciences, N. A Simple method for determining surface porosity based On. Indones. J. Phys. 2009, 20, 37–40. [Google Scholar] [CrossRef]
- Sohaib, M.; Zahir, Z.A.; Khan, M.Y.; Ans, M.; Asghar, H.N.; Yasin, S.; Al-Barakah, F.N.I. Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi J. Biol. Sci. 2020, 27, 777–787. [Google Scholar] [CrossRef]
- Grzybek, P.; Jakubski, Ł.; Dudek, G. Neat chitosan porous materials: A review of preparation, structure characterization and application. Int. J. Mol. Sci. 2022, 23, 9932. [Google Scholar] [CrossRef]
- Yusuf, Y.S.; Sari, M.; Hening, P.; Chotimah, A.I.D. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric porogen for bone tissue engineering. Biomater. Res. 2021, 25, 2. [Google Scholar]
- Mostafa, N.Y.; Brown, P.W. Computer simulationof stoichiometric hydroxyapatite: Structure and substitutions. J. Phys. Chem. Solids. 2007, 68, 431–437. [Google Scholar] [CrossRef]
- Noviyanti, A.R.; Rahayu, I.; Fauzia, R.P. The effect of Mg concentration to mechanical strength of hydroxyapatite derived from eggshell. Arab. J. Chem. 2021, 14, 103032. [Google Scholar] [CrossRef]
- Mawuntu, V.J.; Yusuf, Y. Porous-structure engineering of hydroxyapatite-based scaffold synthesized from Pomacea canaliculata shell by using polyethylene oxide as polymeric porogen. IOP Conf. Ser. Mater. Sci. Eng. 2018, 432, 012045. [Google Scholar] [CrossRef]
- Tahir, D.; Heryanto; Abdullah, B. Quantitative analysis of X-Ray diffraction spectra for determine structural properties and deformation energy of Al, Cu and Si. J. Phys. Conf. Ser. 2019, 1317, 012052. [Google Scholar]
- Lin, W.; Yang, B.; Han, B.; Hu, X. A review of subsurface electrical conductivity anomalies in magnetotelluric imaging. Sensors 2023, 23, 1803. [Google Scholar] [CrossRef]
- Farias, K.A.S.; Sousa, W.J.B.; Cardoso, M.J.B.; Lima, R.J.S.; Rodriguez, M.A.; Fook, M.V.L. Obtaining hydroxyapatite with different precursors for application as a biomaterial. Ceramica 2019, 65, 99–106. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World. J. Nano. Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- Idrisi, B.C.E.E.; Yacoubi, A.E.; Massit, A.; Moutaoikel, S.E.; Rezzouk, A. Rietveld refinement of the crystal structure of hydroxyapatite using X-ray Powder Diffraction. Am. J. Mater. Sci. Eng. 2017, 5, 1–5. [Google Scholar]
- Singh, R.P.; Singh, M.; Verma, G.; Shukla, S.; Singh, S.; Singh, S. Structural analysis of silver doped hydroxyapatite nanopowders by rietveld refinement. Trans Indian Inst. Met. 2017, 70, 1973–1980. [Google Scholar] [CrossRef]
- Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Motelica-Heino, M.; Guegan, R.; Buton, N. Evaluation of antibacterial activity of zinc-doped hydroxyapatite colloids and dispersion stability using ultrasounds. Nanomaterials 2019, 9, 515. [Google Scholar] [CrossRef] [PubMed]
- Kisi, E.H.; Howard, C.H. Applications of Neutron Powder Diffraction; Oxford Series on Neutron Scattering in Condensed Matter; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Sari, Y.W.; Sari, M. The effect of polyvinyl alcohol on the multicomponent biopolymer/hydroxyapatite/ carbonated hydroxyapatite composite. Res. Sq. 2023, 1–21. [Google Scholar] [CrossRef]
- Thunshirn, P.; Wenzel, W.W.; Pfeifer, C. Pore characteristics of hydrochars and their role as a vector for soil bacteria: A critical review of engineering options. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4147–4171. [Google Scholar] [CrossRef]
Parameter | HAP1 | HAP2 | HAP3 | HAP4 |
---|---|---|---|---|
pH | 8.95 | 9.89 | 9.85 | 9.79 |
EC (μs/cm) | 55.4 | 80.50 | 81.45 | 64.15 |
No. | Sample | Peak Position (°) | FWHM (Radian) | Crystalline Size (nm) | Lattice Strain |
---|---|---|---|---|---|
1. | HAP1 | 31.7729 | 0.2384 | 34.27 | 0.0369 |
2. | HAP2 | 31.8256 | 0.1631 | 50.10 | 0.0253 |
3. | HAP3 | 31.7988 | 0.1632 | 50.06 | 0.0252 |
4. | HAP4 | 31.7496 | 0.1640 | 49.79 | 0.0254 |
No. | Cell Parameter | HAP1 | HAP2 | HAP3 | HAP4 |
---|---|---|---|---|---|
1. | Space group | P63/m | P63/m | P63/m | P63/m |
2. | a = b (Å) | 9.4316 | 9.4244 | 9.4222 | 9.4211 |
3. | c (Å) | 6.8813 | 6.8832 | 6.8820 | 6.8814 |
4. | V (Å3) | 530.1233 | 529.4619 | 529.1135 | 528.9485 |
5. | Rp (%) | 4.21 | 6.07 | 6.17 | 6.89 |
6. | Rwp (%) | 5.53 | 8.37 | 8.83 | 10.20 |
7. | Rexp (%) | 4.14 | 4.23 | 4.25 | 4.20 |
8. | χ2 | 1.34 | 1.98 | 2.08 | 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novella, I.; Rupaedah, B.; Eddy, D.R.; Suryana; Irwansyah, F.S.; Noviyanti, A.R. The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. Materials 2023, 16, 6313. https://doi.org/10.3390/ma16186313
Novella I, Rupaedah B, Eddy DR, Suryana, Irwansyah FS, Noviyanti AR. The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. Materials. 2023; 16(18):6313. https://doi.org/10.3390/ma16186313
Chicago/Turabian StyleNovella, Indrika, Bedah Rupaedah, Diana Rakhmawaty Eddy, Suryana, Ferli Septi Irwansyah, and Atiek Rostika Noviyanti. 2023. "The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite" Materials 16, no. 18: 6313. https://doi.org/10.3390/ma16186313
APA StyleNovella, I., Rupaedah, B., Eddy, D. R., Suryana, Irwansyah, F. S., & Noviyanti, A. R. (2023). The Influence of Polyvinyl Alcohol Porogen Addition on the Nanostructural Characteristics of Hydroxyapatite. Materials, 16(18), 6313. https://doi.org/10.3390/ma16186313