Effect of Cs+ Doping on the Carrier Dynamics of MAPbI3 Perovskite
Abstract
:1. Introduction
2. Experiment
2.1. Material Preparation
2.2. Preparation of Perovskite Materials
2.3. Experimental Characterization
3. Results and Discussion
3.1. Materials Crystal Characterization
3.2. The UV-Visible Absorption Spectra
3.3. Carriers Dynamics for Transient Absorption Spectra
3.3.1. Transient Absorption Spectra Characterization
3.3.2. Single-Wavelength Evolution Dynamics
3.3.3. Full Spectrum Evolutionary Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 62). Prog. Photovolt Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Green, M.A.; Bein, T. Perovskite cells charge forward. Nat. Mater. 2015, 14, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, F.; Chu, Z.; Hao, J.; Chen, X.; Quan, J.; Huang, Z.; Wang, X.; Li, X.; Yan, Y.; et al. Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nat. Commun. 2021, 12, 5009. [Google Scholar] [CrossRef]
- De Wolf, S.; Holovsky, J.; Moon, S.J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F.; Yum, J.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Brenner, T.M.; Egger, D.A.; Rappe, A.M.; Kronik, L.; Hodes, G.; Cahen, D. Are mobilities in hybrid organic–inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 2015, 6, 4754–4757. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. Phys. Chem. Lett. 2015, 6, 4758–4761. [Google Scholar] [CrossRef]
- Wong, A.B.; Lai, M.; Eaton, S.W.; Yu, Y.; Lin, E.; Dou, L.; Fu, A.; Yang, P. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 2015, 15, 5519–5524. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, J.; Wen, Q. CH3NH3PbI3 perovskite/silver nanowire complex with higher absorption and stability. J. Electron. Mater. 2021, 50, 5177–5183. [Google Scholar] [CrossRef]
- Gulomov, J.; Accouche, O.; Aliev, R.; Azab, M.; Gulomova, I. Analyzing the ZnO and CH3NH3PbI3 as Emitter Layer for Silicon Based Heterojunction Solar Cells. Comput. Mater. Contin. 2022, 74, 575–590. [Google Scholar] [CrossRef]
- Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Tang, W.; Wang, S.; Ma, Q.; Wu, Y.; Yuan, N.; Ding, J.; Zhang, W.H. Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. J. Energy Chem. 2020, 48, 217–225. [Google Scholar] [CrossRef]
- Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I. Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloys Compd. 2017, 705, 828–839. [Google Scholar] [CrossRef]
- Muzammal uz Zaman, M.; Imran, M.; Saleem, A.; Kamboh, A.H.; Arshad, M.; Khan, N.A.; Akhter, P. Potassium doped methylammonium lead iodide (MAPbI3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties. Physica B 2017, 522, 57–65. [Google Scholar] [CrossRef]
- Young, J.; Rondinelli, J.M. Octahedral rotation preferences in perovskite iodides and bromides. J. Phys. Chem. Lett. 2016, 7, 918–922. [Google Scholar] [CrossRef]
- Taya, A.; Rani, P.; Thakur, J.; Kashyap, M.K. First principles study of structural, electronic and optical properties of Cs-doped CH3NH3PbI3 for photovoltaic applications. Vacuum 2019, 160, 440–444. [Google Scholar] [CrossRef]
- Imran, M.; Saleem, A.; Khan, N.A.; Kamboh, A.H. Enhanced efficiency and stability of perovskite solar cells by partial replacement of CH3NH3+ with inorganic Cs+ in CH3NH3PbI3 perovskite absorber layer. Phys. B Condens. Matter 2019, 572, 1–11. [Google Scholar] [CrossRef]
- Yusoff, A.R.B.M.; Kim, H.P.; Li, X.; Kim, J.; Jang, J.; Nazeeruddin, M.K. Ambipolar triple cation perovskite field effect transistors and inverters. Adv. Mater. 2017, 29, 1602940. [Google Scholar] [CrossRef]
- Sedighi, R.; Tajabadi, F.; Taghavinia, N. Vapor assisted deposition of alkaline doped perovskites: Pure phase formation of CsxMA1−xPbI3. Electrochim. Acta 2018, 259, 485–491. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J.; Kim, H.B.; Kim, S.; Walker, B.; Kim, G.H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Jo, H.J.; Park, D.Y.; So, M.G.; Kim, Y.; Kim, J.S.; Jeong, M.S. Optical properties of CH3NH3PbI3 crystal grown using inverse temperature crystallization. Curr. Appl. Phys. 2019, 19, 60–65. [Google Scholar] [CrossRef]
- Baikie, T.; Fang, Y.; Kadro, J.M.; Schreyer, M.; Wei, F.; Mhaisalkar, S.G.; Graetzel, M.; White, T.J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641. [Google Scholar] [CrossRef]
- Murugadoss, G.; Thangamuthu, R.; Vijayaraghavan, S.; Kanda, H.; Ito, S. Caesium–Methyl ammonium mixed-cation lead iodide perovskite crystals: Analysis and application for perovskite solar cells. Electrochim. Acta 2017, 257, 267–280. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Ripolles, T.S.; Nishinaka, K.; Ogomi, Y.; Miyata, Y.; Hayase, S. Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium. Sol. Energy Mater. Sol. Cells 2016, 144, 532–536. [Google Scholar] [CrossRef]
- Mozur, E.M.; Maughan, A.E.; Cheng, Y.; Huq, A.; Jalarvo, N.; Daemen, L.L.; Neilson, J.R. Orientational glass formation in substituted hybrid perovskites. Chem. Mater. 2017, 29, 10168–10177. [Google Scholar] [CrossRef]
- Ayvazyan, G.Y.; Hakhoyan, L.A.; Dashtoyan, H.R.; Matevosyan, L.A. Preparation and investigation of vacuum-deposited CH3NH3PbI3–xClx perovskite films on black silicon. J. Contemp. Phys. (Armen. Acad. Sci.) 2023, 58, 85–91. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Bian, F.; Meng, X. First-principles investigation on the electronic and mechanical properties of Cs-doped CH3NH3PbI3. Materials 2018, 11, 1141. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623. [Google Scholar] [CrossRef]
- Yuzawa, T.; Hamaguchi, H.O. Triplet quantum chain process in the photoisomerization of 9-cis retinal as revealed by nanosecond time-resolved infrared spectroscopy. J. Mol. Struct. 2010, 976, 414–418. [Google Scholar] [CrossRef]
- Richter, J.M.; Branchi, F.; Valduga de Almeida Camargo, F.; Zhao, B.; Friend, R.H.; Cerullo, G.; Deschler, F. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun. 2017, 8, 376. [Google Scholar] [CrossRef]
- Madjet, M.E.; Berdiyorov, G.R.; El-Mellouhi, F.; Alharbi, F.H.; Akimov, A.V.; Kais, S. Cation effect on hot carrier cooling in halide perovskite materials. J. Phys. Chem. Lett. 2017, 8, 4439–4445. [Google Scholar] [CrossRef]
- Von der Linde, D.; Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 1979, 42, 1090. [Google Scholar] [CrossRef]
- Deng, X.; Wen, X.; Huang, S.; Sheng, R.; Harada, T.; Kee, T.W.; Green, M.; Ho-Baillie, A. Ultrafast carrier dynamics in methylammonium lead bromide perovskite. J. Phys. Chem. C 2016, 120, 2542–2547. [Google Scholar] [CrossRef]
- Manser, J.S.; Kamat, P.V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737–743. [Google Scholar] [CrossRef]
- Shen, J.X.; Zhang, X.; Das, S.; Kioupakis, E.; Van de Walle, C.G. Unexpectedly strong auger recombination in halide perovskites. Adv. Energy Mater. 2018, 8, 1801027. [Google Scholar] [CrossRef]
- Herz, L.M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 2016, 67, 65–89. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.V.; Mahler, B.; Cornaggia, C.; Gustavsson, T.; Cassette, E. Charge Carrier Relaxation in Colloidal FAPbI3 Nanostructures Using Global Analysis. Nanomaterials 2020, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Jiang, J.; Zhang, Y.; Qiu, J.; Wang, S.; Chen, Z.; Yuan, N.; Ding, J. Observation of enhanced hot phonon bottleneck effect in 2D perovskites. Appl. Phys. Lett. 2018, 112, 143903. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Sun, X.; Zhang, X. Strong hot-phonon bottleneck effect in all-inorganic perovskite nanocrystals. Appl. Phys. Lett. 2020, 116, 151902. [Google Scholar] [CrossRef]
- Yang, J.; Wen, X.; Xia, H.; Sheng, R.; Ma, Q.; Kim, J.; Tapping, P.; Harada, T.; Kee, T.W.; Huang, F.; et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 2017, 8, 14120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Miyata, K.; Fu, Y.; Wang, J.; Joshi, P.P.; Niesner, D.; Williams, K.W.; Jin, S.; Zhu, X.Y. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 2016, 353, 1409–1413. [Google Scholar] [CrossRef]
- Lin, F.; Yu, G.; Weng, S.; Zhou, C.; Han, Y.; Liu, W.; Zhou, K.; Wang, Y.; Lin, H. Blue photoluminescence enhancement achieved by zero-dimensional organic indium halides via a metal ion doping strategy. Mater. Chem. Front. 2023, 7, 137–144. [Google Scholar] [CrossRef]
- Phuong, L.Q.; Braly, I.L.; Katahara, J.K.; Hillhouse, H.W.; Kanemitsu, Y. Nonlinear photocarrier recombination dynamics in mixed-halide CH3NH3Pb (I1−xBrx)3 perovskite thin films. Appl. Phys. Express 2017, 10, 102401. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Abate, A.; Saliba, M.; Hollman, D.J.; Stranks, S.D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H.J. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 2014, 14, 3247–3254. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784. [Google Scholar] [CrossRef] [PubMed]
- Saidaminov, M.I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H.; Long, G.; Tan, F.; Johnston, A.; Zhao, Y.; Voznyy, O.; et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3, 648–654. [Google Scholar] [CrossRef]
- Gao, B.; Meng, J. RbCs(MAFA)PbI3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation. Appl. Surf. Sci. 2020, 530, 147240. [Google Scholar] [CrossRef]
Wavelength (nm) | τ1 (ps) | τ2 (ps) | |
---|---|---|---|
MAPbI3 | 750 | 104.1 ± 14.7 (43%) | 652.8 ± 131 (57%) |
Cs0.05MA0.95PbI3 | 750 | 110.4 ± 18.4 (45%) | 679.4 ± 174 (55%) |
Cs0.1MA0.9PbI3 | 750 | 178.5 ± 15 (48%) | 1502 ± 130 (52%) |
Cs0.3MA0.7PbI3 | 736 | 84.11 ± 12 (44%) | 512.7 ± 82 (56%) |
Cs0.5MA0.5PbI3 | 720 | 80.1 ± 15 (49%) | 424.5 ± 101 (51%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Wang, Y.; Zhang, P.; Du, L. Effect of Cs+ Doping on the Carrier Dynamics of MAPbI3 Perovskite. Materials 2023, 16, 6064. https://doi.org/10.3390/ma16176064
Duan M, Wang Y, Zhang P, Du L. Effect of Cs+ Doping on the Carrier Dynamics of MAPbI3 Perovskite. Materials. 2023; 16(17):6064. https://doi.org/10.3390/ma16176064
Chicago/Turabian StyleDuan, Menghan, Yunpeng Wang, Pingli Zhang, and Luchao Du. 2023. "Effect of Cs+ Doping on the Carrier Dynamics of MAPbI3 Perovskite" Materials 16, no. 17: 6064. https://doi.org/10.3390/ma16176064
APA StyleDuan, M., Wang, Y., Zhang, P., & Du, L. (2023). Effect of Cs+ Doping on the Carrier Dynamics of MAPbI3 Perovskite. Materials, 16(17), 6064. https://doi.org/10.3390/ma16176064