The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles
Abstract
:1. Introduction
2. Overview of EVs
3. Lithium-Ion Batteries as an Alternative Battery Source
3.1. Historical Attraction toward Lithium-Ion Batteries in Electric Vehicles
3.2. Advantages of Lithium-Ion Batteries in Electric Vehicles
3.3. Types of Commercialized Lithium-Ion Batteries in Electric Vehicles
3.4. Impact of Current Policies and Regulations for Lithium-Ion Batteries in Electric Vehicles
4. Fabrication and Applications of Lithium-Ion Batteries in EVs
4.1. Battery Fabrication
4.2. Battery Packing
4.3. Energy Storage
4.4. Battery Management Systems
4.4.1. Smart Battery Management Systems
5. Materials Used in Li-Ion Batteries for EVs
5.1. Anode Electrode Materials
5.1.1. Carbonaceous-Based Materials
5.1.2. Alloyed Carbonaceous Materials
5.1.3. Titanium-Based Oxide Materials
5.1.4. Conversion-Type Transition-Metal Compound Materials
5.1.5. Silicon-Based Materials
5.2. Cathode Electrode Materials
5.2.1. Transition Metal-Oxide-Based Materials
5.2.2. Polyanion-Based Materials
5.2.3. Conversion-Based Materials
6. General Advancements and Challenges in Li-Ion Batteries for EVs
6.1. Advancements for Li-Ion-Based EVs
6.1.1. General Battery Management
6.1.2. Solid-State Li-Ion Batteries
6.1.3. Lithium Sulfur Batteries
6.1.4. Lithium–Air Batteries
6.2. Challenges for Li-Ion-Batteries in EVs
6.2.1. Development and Acquisition of Materials
6.2.2. Limited Lifespans
6.2.3. Thermal Runaway
6.2.4. Influence of Diffusion-Induced Stress and Capacity Fading
6.2.5. Other Li-Ion Battery Issues
7. Recommendations for Overcoming Challenges for Li-Ion Batteries in EVs
- Efforts toward the synthesis of nanostructured composite materials should be made. By doing so, there can be less of a reliance on costly and limited materials such as Co.
- Similarly, efforts toward recycling practices should be made. By doing so, limited and expensive materials can be re-used without the need for additional purchasing.
- Application of external coatings such as plasma electrolytic oxidation (PEO) can reduce the likelihood of Li-ion entrapment, thus further limiting the formation of uneven and excessive SEI layers
- Efforts toward cloud-based BMS and advanced cooling techniques should be investigated to prevent unexpected thermal runaways during driving.
- Advancements in advanced, time-reducing, and cost-effective manufacturing techniques should be continued to increase the efficiency of LIBs for EV applications.
8. Conclusions and Future Directions
- From an industrial perspective, three different trends are taking place. First, there is a trend toward manufacturing EV-based LIBs absent of Co. This trend is due to the cost fluctuation of Co due to uneven global reserves. Second, pushes toward reducing manufacturing costs/times of EV-based LIBs are taking place. The main areas of attention are toward the coating/drying and forming/aging processes. Lastly, trends toward advanced battery management systems, using features such as cloud infrastructures and deep learning algorithms, are rapidly occurring.
- From a policy perspective, there is a global push toward the widespread usage of LIB-based EVs. However, concerns regarding the disposal of used LIBs are increasing. As a response, various countries such as the USA, Canada, and China are investing in advanced recycling technologies.
- In recent years, there has been a great advancement toward novel materials for the anode and cathode electrodes. Although much attention has been on cathode electrodes, the general trends of using transition metals alongside polyanoion and conversion materials are taking place. Similarly, novel nanostructuring for LIB materials is also being investigated.
- To allow for further widespread usage, it is suggested that advancements towards reducing the costs/time of LIB fabrication should be made. One option is to reduce the manufacturing processes needed for fabrication. Another option is to invest in low-cost and plentiful materials. By doing so, prices for EVs can be reduced, thus increasing their market share. These advancements can also prevent other technologies such as Al-ion/Mg-ion-based batteries from replacing LIBs for EV applications.
- The short-term goal should be focused on reducing manufacturing costs/time. Being the most easiest and realistic short-term goal to achieve, focus should be made on the coating/driving and formation/aging processes.
- The medium-term goal should be to achieve and commercialize efficient recycling technologies. By doing so, costly materials can be re-used, which can enable a circular economy.
- The long-term goal should be to invest in more advanced material processing technologies. Specifically, attention toward nanostructuring and post-processing anode/cathode materials should be made.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; AN, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175. [Google Scholar] [CrossRef]
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Nzereogu, P.U.; Omah, A.D.; Ezema, F.I.; Iwuoha, E.I.; Nwanya, A.C. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 2022, 9, 100233. [Google Scholar] [CrossRef]
- Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 2011, 15, 1623–1630. [Google Scholar] [CrossRef]
- Duan, J.; Tang, X.; Dai, H.; Yang, Y.; Wu, W.; Wei, X.; Huang, Y. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochem. Energy Rev. 2020, 3, 1–42. [Google Scholar] [CrossRef]
- Liu, Z.; Song, J.; Kubal, J.; Susarla, N.; Knehr, K.W.; Islam, E.; Nelson, P.; Ahmed, S. Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Policy 2021, 158, 112564. [Google Scholar] [CrossRef]
- Knez, M.; Zevnik, G.K.; Obrecht, M. A review of available chargers for electric vehicles: United States of America, European Union, and Asia. Renew. Sustain. Energy Rev. 2019, 109, 284–293. [Google Scholar] [CrossRef]
- Sotnyk, I.; Hulak, D.; Yakushev, O.; Yakusheva, O.; Prokopenko, O.V.; Yevdokymov, A. Development of the US electric car market: Macroeconomic determinants and forecasts. Polityka Energ.–Energy Policy J. 2020, 23, 147–164. [Google Scholar] [CrossRef]
- Hardman, S.; Fleming, K.L.; Khare, E.; Ramadan, M.M. A Perspective on Equity in the Transition to Electric Vehicles. Available online: https://sciencepolicyreview.org/2021/08/equity-transition-electric-vehicles/ (accessed on 11 July 2023).
- Marano, V.; Onori, S.; Guezennec, Y.; Rizzoni, G.; Madella, N. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 536–543. [Google Scholar] [CrossRef]
- Holmes, A. More Tesla Employees Say They Were Fired for Staying Home over COVID-19 Fears Even though CEO Elon Musk Said They Could. Business Insider. Available online: https://www.businessinsider.com/tesla-plant-firings-elon-musk-COVID-19-staying-home-2020-7 (accessed on 9 July 2023).
- Siddiqui, F. Tesla Fires Three More, Overriding Guidance Allowing Workers to Stay Home during Pandemic. Washington Post, 1 July 2020. Available online: https://www.washingtonpost.com/technology/2020/07/01/tesla-plant-firings/ (accessed on 9 July 2023).
- Wu, M.; Chen, W. Forecast of Electric Vehicle Sales in the World and China Based on PCA-GRNN. Sustainability 2022, 14, 2206. [Google Scholar] [CrossRef]
- Web of Science Platform. Clarivate. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/ (accessed on 19 June 2023).
- Trends in Electric Light-Duty Vehicles—Global EV Outlook 2023—Analysis. IEA. Available online: https://www.iea.org/reports/global-ev-outlook-2023/trends-in-electric-light-duty-vehicles (accessed on 9 July 2023).
- Mao, N.; Gadkari, S.; Wang, Z.; Zhang, T.; Bai, J.; Cai, Q. A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions. Energy 2023, 278, 128027. [Google Scholar] [CrossRef]
- Jiang, F.; Peng, P. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters. Sci. Rep. 2016, 6, 32639. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z. A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles. Measurement 2018, 116, 402–411. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Fuchs, D. Thermal Runaway: Causes and Consequences on Cell Level. In Automotive Battery Technology; Thaler, A., Watzenig, D., Eds.; SpringerBriefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2014; pp. 37–51. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Chan, C.C. The state of the art of electric and hybrid vehicles. Proc. IEEE 2002, 90, 247–275. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Ajanovic, A. The future of electric vehicles: Prospects and impediments. WIREs Energy Environ. 2015, 4, 521–536. [Google Scholar] [CrossRef]
- Wakefield, E.H. History of the Electric Automobile: Hybrid Electric Vehicles; SAE International: Warrendale, PA, USA, 1998. [Google Scholar]
- Rajashekara, K. History of electric vehicles in General Motors. IEEE Trans. Ind. Appl. 1994, 30, 897–904. [Google Scholar] [CrossRef]
- Audi Will Only Build Electric Cars by the End of the Decade, the Company Says. Yahoo Finance, 20 December 2022. Available online: https://finance.yahoo.com/news/audi-only-build-electric-cars-183000211.html (accessed on 11 July 2023).
- Motavalli, J. Every Automaker’s EV Plans through 2035 and beyond. Forbes Wheels, 27 July 2021. Available online: https://www.forbes.com/wheels/news/automaker-ev-plans/ (accessed on 11 July 2023).
- Muehlegger, E.; Rapson, D.S. Subsidizing Low- and Middle-Income Adoption of Electric Vehicles: Quasi-Experimental Evidence from California; Working Paper Series; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Narassimhan, E.; Johnson, C. The role of demand-side incentives and charging infrastructure on plug-in electric vehicle adoption: Analysis of US States. Environ. Res. Lett. 2018, 13, 074032. [Google Scholar] [CrossRef]
- Li, W.; Yang, M.; Sandu, S. Electric vehicles in China: A review of current policies. Energy Environ. 2018, 29, 1512–1524. [Google Scholar] [CrossRef]
- Du, J.; Ouyang, D. Progress of Chinese electric vehicles industrialization in 2015: A review. Appl. Energy 2017, 188, 529–546. [Google Scholar] [CrossRef]
- He, H.; Sun, F.; Wang, Z.; Lin, C.; Zhang, C.; Xiong, R.; Deng, J.; Zhu, X.; Xie, P.; Zhang, S.; et al. China’s battery electric vehicles lead the world: Achievements in technology system architecture and technological breakthroughs. Green Energy Intell. Transp. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Okada, T.; Tamaki, T.; Managi, S. Effect of environmental awareness on purchase intention and satisfaction pertaining to electric vehicles in Japan. Transp. Res. Part Transp. Environ. 2019, 67, 503–513. [Google Scholar] [CrossRef]
- Palmer, K.; Tate, J.E.; Wadud, Z.; Nellthorp, J. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Appl. Energy 2018, 209, 108–119. [Google Scholar] [CrossRef]
- Rimpas, D.; Kaminaris, S.D.; Aldarraji, I.; Piromalis, D.; Vokas, G.; Papageorgas, P.G.; Tsaramirsis, G. Energy management and storage systems on electric vehicles: A comprehensive review. Mater. Today Proc. 2022, 61, 813–819. [Google Scholar] [CrossRef]
- Chau, K.T.; Wong, Y.S.; Chan, C.C. An overview of energy sources for electric vehicles. Energy Convers. Manag. 1999, 40, 1021–1039. [Google Scholar] [CrossRef]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of Different Battery Types for Electric Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [Google Scholar] [CrossRef]
- Sherif, K. The Lithium-Ion Battery Industry for Electric Vehicles. Bachelor Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. Available online: https://dspace.mit.edu/handle/1721.1/61873 (accessed on 9 July 2023).
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- 1998_2002_nissan_altra-ev. Available online: http://www.tzev.com/1998_2002_nissan_altra-ev.html (accessed on 11 July 2023).
- Demandt, B. Nissan Altra EV US car sales figures. carsalesbase.com, 30 Janauary 2016. Available online: https://carsalesbase.com/us-nissan-altra-ev/ (accessed on 11 July 2023).
- Eftekhari, A. Lithium Batteries for Electric Vehicles: From Economy to Research Strategy. ACS Sustain. Chem. Eng. 2019, 7, 5602–5613. [Google Scholar] [CrossRef]
- Electric Vehicles in the United States: A New Model with Forecasts to 2030 | Inter American Dialogue. Available online: https://globaltrends.thedialogue.org/publication/electric-vehicles-in-the-united-states-a-new-model-with-forecasts-to-2030/ (accessed on 12 July 2023).
- Dunn, J.; Slattery, M.; Kendall, A.; Ambrose, H.; Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 2021, 55, 5189–5198. [Google Scholar] [CrossRef]
- Hsieh, I.-Y.L.; Pan, M.S.; Green, W.H. Transition to electric vehicles in China: Implications for private motorization rate and battery market. Energy Policy 2020, 144, 111654. [Google Scholar] [CrossRef]
- Mohammadi, F.; Saif, M. A comprehensive overview of electric vehicle batteries market. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 3, 100127. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164, A5019. [Google Scholar] [CrossRef]
- Garche, J.; Karden, E.; Moseley, P.T.; Rand, D.A.J. Lead-Acid Batteries for Future Automobiles; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Yudhistira, R.; Khatiwada, D.; Sanchez, F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J. Clean. Prod. 2022, 358, 131999. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Chen, P.; Wang, C.; Wang, T. Review and prospects for room-temperature sodium-sulfur batteries. Mater. Res. Lett. 2022, 10, 691–719. [Google Scholar] [CrossRef]
- Ma, C.; Xu, T.; Wang, Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020, 25, 811–826. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wang, C.; Wu, W.; Su, D.; Wang, G. The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. J. Alloys Compd. 2019, 792, 797–817. [Google Scholar] [CrossRef]
- Gutsch, M.; Leker, J. Global warming potential of lithium-ion battery energy storage systems: A review. J. Energy Storage 2022, 52, 105030. [Google Scholar] [CrossRef]
- Xia, X.; Li, P. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Sci. Total Environ. 2022, 814, 152870. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Z.; Wei, X. Performance and characteristic research in LiFePO4 battery for electric vehicle applications. In Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009; pp. 1657–1661. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Vo, T.T.; Cao, Z.; Kapoor, A. An overview of lithium-ion batteries for electric vehicles. In Proceedings of the 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 12–14 December 2012; pp. 230–235. [Google Scholar]
- Wang, M.; Liu, K.; Dutta, S.; Alessi, D.S.; Rinklebe, J.; Ok, Y.S.; Tsang, D.C.W. Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 163, 112515. [Google Scholar] [CrossRef]
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J.F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2019, 2, 148–156. [Google Scholar] [CrossRef]
- Wang, Y.; An, N.; Wen, L.; Wang, L.; Jiang, X.; Hou, F.; Yin, Y.; Liang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.D.M.; Hussain, A.; Yusof, Y.; Ker, P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Walvekar, H.; Beltran, H.; Sripad, S.; Pecht, M. Implications of the Electric Vehicle Manufacturers’ Decision to Mass Adopt Lithium-Iron Phosphate Batteries. IEEE Access 2022, 10, 63834–63843. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Yim, C.-H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8, 70. [Google Scholar] [CrossRef]
- Verma, J.; Kumar, D. Metal-ion batteries for electric vehicles: Current state of the technology, issues and future perspectives. Nanoscale Adv. 2021, 3, 3384–3394. [Google Scholar] [CrossRef]
- Leisegang, T.; Meutzner, F.; Zschornak, M.; Münchgesang, W.; Schmid, R.; Nestler, T.; Eremin, R.A.; Kabanov, A.A.; Blatov, V.A.; Meyer, D.C. The Aluminum-Ion Battery: A Sustainable and Seminal Concept? Front. Chem. 2019, 7, 268. Available online: https://www.frontiersin.org/articles/10.3389/fchem.2019.00268 (accessed on 24 August 2023). [CrossRef] [PubMed]
- Yang, Z.; Huang, H.; Lin, F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Adv. Energy Mater. 2022, 12, 2200383. [Google Scholar] [CrossRef]
- Xia, X.; Li, P.; Xia, Z.; Wu, R.; Cheng, Y. Life cycle carbon footprint of electric vehicles in different countries: A review. Sep. Purif. Technol. 2022, 301, 122063. [Google Scholar] [CrossRef]
- Li, P.; Xia, X.; Guo, J. A review of the life cycle carbon footprint of electric vehicle batteries. Sep. Purif. Technol. 2022, 296, 121389. [Google Scholar] [CrossRef]
- Will the EU’s Proposed Battery Regulation Drive the Global ESG Agenda for Battery Raw Materials? 10 March 2022. Available online: https://nickelinstitute.org/ (accessed on 25 August 2023).
- EU Agrees New Law on More Sustainable and Circular Batteries. European Commission-European Commission. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_7588 (accessed on 25 August 2023).
- A European Green Deal. 14 July 2021. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 25 August 2023).
- Battery Policies and Incentives Search. Energy.gov. Available online: https://www.energy.gov/eere/vehicles/battery-policies-and-incentives-search (accessed on 23 August 2023).
- Hanley, S. Battery Recycling Regulations Matter in Hunt for US EV Tax Credits. CleanTechnica, 24 July 2023. Available online: https://cleantechnica.com/2023/07/24/battery-recycling-regulations-matter-in-hunt-for-us-ev-tax-credits/ (accessed on 23 August 2023).
- Canada Agrees to Billions in Incentives for EV Battery Plant. Available online: https://www.aljazeera.com/news/2023/7/6/canada-agrees-to-billions-in-incentives-for-ev-battery-plant (accessed on 24 August 2023).
- Lawson, A. EU ‘Could End Reliance on China for Electric Car Batteries by 2030’. The Guardian, 24 January 2023. Available online: https://www.theguardian.com/business/2023/jan/24/eu-could-end-reliance-on-china-electric-car-batteries-by-2030-investment-joe-biden-369bn-green-subsidies (accessed on 24 August 2023).
- Gong, H.; Hansen, T. The rise of China’s new energy vehicle lithium-ion battery industry: The coevolution of battery technological innovation systems and policies. Environ. Innov. Soc. Transit. 2023, 46, 100689. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Lithium-Ion Battery Recycling. 17 June 2023. Available online: https://www.epa.gov/hw/lithium-ion-battery-recycling (accessed on 24 August 2023).
- As Electrification Initiatives Grow EPA Releases Guidance on Lithium-Ion Battery End-of-Life Considerations | Foley & Lardner LLP. Available online: https://www.foley.com/en/insights/publications/2023/08/electrification-epa-guidance-lithium-ion-battery (accessed on 23 August 2023).
- Biden-Harris Administration Announces $192 Million to Advance Battery Recycling Technology. Energy.gov. Available online: https://www.energy.gov/articles/biden-harris-administration-announces-192-million-advance-battery-recycling-technology (accessed on 24 August 2023).
- Angueira, G.A. The US Doesn’t Have a Law Mandating EV Battery Recycling. Should It? Grist, 26 May 2023. Available online: https://grist.org/technology/the-u-s-doesnt-have-a-law-mandating-ev-battery-recycling-should-it/ (accessed on 23 August 2023).
- Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300. [Google Scholar] [CrossRef]
- 49 CFR § 173.185—Lithium Cells and Batteries. LII / Legal Information Institute. Available online: https://www.law.cornell.edu/cfr/text/49/173.185 (accessed on 12 July 2023).
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Pistoia, G. Lithium-Ion Batteries: Advances and Applications; Newnes: Amsterdam, The Netherlands, 2013.
- Maiser, E. Battery packaging—Technology review. AIP Conf. Proc. 2014, 1597, 204–218. [Google Scholar] [CrossRef]
- Leng, F.; Tan, C.M.; Pecht, M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci. Rep. 2015, 5, 12967. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.-C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Ning, G.; Haran, B.; Popov, B.N. Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 2003, 117, 160–169. [Google Scholar] [CrossRef]
- Tran, M.-K.; Panchal, S.; Khang, T.D.; Panchal, K.; Fraser, R.; Fowler, M. Concept Review of a Cloud-Based Smart Battery Management System for Lithium-Ion Batteries: Feasibility, Logistics, and Functionality. Batteries 2022, 8, 19. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C. Study on Battery Management System and Lithium-ion Battery. In Proceedings of the 2009 International Conference on Computer and Automation Engineering, Bangkok, Thailand, 8–10 March 2009; pp. 218–222. [Google Scholar]
- Tian, J.; Liu, X.; Li, S.; Wei, Z.; Zhang, X.; Xiao, G.; Wang, P. Lithium-ion battery health estimation with real-world data for electric vehicles. Energy 2023, 270, 126855. [Google Scholar] [CrossRef]
- Nelson, P.A.; Ahmed, S.; Gallagher, K.G.; Dees, D.W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, 3rd ed.; Argonne National Lab. (ANL): Argonne, IL, USA, 2019. [CrossRef]
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. iScience 2021, 24, 102332. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Nelson, P.A.; Gallagher, K.G.; Dees, D.W. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing. J. Power Sources 2016, 322, 169–178. [Google Scholar] [CrossRef]
- Yao, W.; Chouchane, M.; Li, W.; Bai, S.; Liu, Z.; Li, L.X.; Chen, A.; Sayahpour, B.; Shimizu, R.; Raghavendran, G.; et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating. Energy Environ. Sci. 2023, 16, 1620–1630. [Google Scholar] [CrossRef]
- Henriques, A.; Rabiei Baboukani, A.; Jafarizadeh, B.; Chowdhury, A.H.; Wang, C. Nano-Confined Tin Oxide in Carbon Nanotube Electrodes via Electrostatic Spray Deposition for Lithium-Ion Batteries. Materials 2022, 15, 9086. [Google Scholar] [CrossRef]
- Tao, R.; Steinhoff, B.; Sun, X.-G.; Sardo, K.; Skelly, B.; Meyer, H.M.; Sawicki, C.; Polizos, G.; Lyu, X.; Du, Z.; et al. High-throughput and high-performance lithium-ion batteries via dry processing. Chem. Eng. J. 2023, 471, 144300. [Google Scholar] [CrossRef]
- Wood, D. Towards Solventless Processing of Thick Electron-Beam (EB) Cured Lithium-Ion Battery Cathodes. Electrochem. Soc. Meet. Abstr. 2017, 578. [Google Scholar] [CrossRef]
- Haarmann, M.; Haselrieder, W.; Kwade, A. Extrusion-Based Processing of Cathodes: Influence of Solid Content on Suspension and Electrode Properties. Energy Technol. 2020, 8, 1801169. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Alpas, A.T. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells. Carbon 2012, 50, 5359–5371. [Google Scholar] [CrossRef]
- Li, J.; Murphy, E.; Winnick, J.; Kohl, P.A. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 2001, 102, 302–309. [Google Scholar] [CrossRef]
- Arora, S.; Kapoor, A. Mechanical Design and Packaging of Battery Packs for Electric Vehicles. In Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost; Pistoia, G., Liaw, B., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2018; pp. 175–200. [Google Scholar]
- Kim, G.-H.; Pesaran, A. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation); National Renewable Energy Lab. (NREL): Golden, CO, USA, May 2007; NREL/PR-540-41531. Available online: https://www.osti.gov/biblio/913594 (accessed on 24 August 2023).
- Halimah, P.N.; Rahardian, S.; Budiman, B.A. Battery Cells for Electric Vehicles. Int. J. Sustain. Transp. Technol. 2019, 2, 54–57. [Google Scholar] [CrossRef]
- Saw, L.H.; Ye, Y.; Tay, A.A.O. Integration issues of lithium-ion battery into electric vehicles battery pack. J. Clean. Prod. 2016, 113, 1032–1045. [Google Scholar] [CrossRef]
- Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; et al. Immersion cooling for lithium-ion batteries—A review. J. Power Sources 2022, 525, 231094. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Micari, S.; Foti, S.; Testa, A.; De Caro, S.; Sergi, F.; Andaloro, L.; Aloisio, D.; Napoli, G. Reliability assessment and lifetime prediction of Li-ion batteries for electric vehicles. Electr. Eng. 2022, 104, 165–177. [Google Scholar] [CrossRef]
- FOTW #1251, August 15, 2022: Electric Vehicles Have the Lowest Annual Fuel Cost of All Light-Duty Vehicles. Energy.gov. Available online: https://www.energy.gov/eere/vehicles/articles/fotw-1251-august-15-2022-electric-vehicles-have-lowest-annual-fuel-cost-all (accessed on 12 July 2023).
- Alternative Fuels Data Center: Charging Electric Vehicles at Home. Available online: https://afdc.energy.gov/fuels/electricity_charging_home.html (accessed on 12 July 2023).
- Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164, A1703. [Google Scholar] [CrossRef]
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Junaid Alvi, M.; Kim, H.-J. Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation. Energies 2019, 12, 446. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, Y.; Wang, J.; He, H.; Peng, S.; Pecht, M. Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 4110–4121. [Google Scholar] [CrossRef]
- Klee Barillas, J.; Li, J.; Günther, C.; Danzer, M.A. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems. Appl. Energy 2015, 155, 455–462. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Cao, R.; Wang, M.; Cheng, H.; Zhang, L.; Jiang, Y.; Li, Y.; Chen, B.; Ling, H.; et al. Implementation for a cloud battery management system based on the CHAIN framework. Energy AI 2021, 5, 100088. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Jiao, D.; Xie, Z.; Wan, Q.; Qu, M. Reduced irreversible capacities of graphene oxide-based anodes used for lithium ion batteries via alkali treatment. J. Energy Chem. 2019, 37, 73–81. [Google Scholar] [CrossRef]
- Spitthoff, L.; Shearing, P.R.; Burheim, O.S. Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies 2021, 14, 1248. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, Q.-W.; Wang, Q.; Ma, J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin. Chem. Lett. 2020, 31, 583–588. [Google Scholar] [CrossRef]
- Tang, Q.; Cui, Y.; Wu, J.; Qu, D.; Baker, A.P.; Ma, Y.; Song, X.; Liu, Y. Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high-performance anode for lithium-ion and sodium-ion batteries. Nano Energy 2017, 41, 377–386. [Google Scholar] [CrossRef]
- Qi, W.G.; Shapter, J.; Wu, Q.; Yin, T.; Gao, G.; Cui, D. Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives. J. Mater. Chem. A 2017, 5, 19521–19540. [Google Scholar] [CrossRef]
- Yu, K.; Wang, J.; Song, K.; Wang, X.; Liang, C.; Dou, Y. Hydrothermal Synthesis of Cellulose-Derived Carbon Nanospheres from Corn Straw as Anode Materials for Lithium ion Batteries. Nanomaterials 2019, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Song, N.; Yang, Y.; Sun, L.; Hu, P.; Wang, J. Recent progress of efficient utilization of titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater. 2022, 29, 22–31. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.-T. Design of titanium alloys by additive manufacturing: A critical review. Adv. Powder Mater. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Xu, T.; Wang, W.; Gordin, M.L.; Wang, D.; Choi, D. Lithium-ion batteries for stationary energy storage. JOM 2010, 62, 24–30. [Google Scholar] [CrossRef]
- Yu, S.-H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H.D. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Acc. Chem. Res. 2018, 51, 273–281. [Google Scholar] [CrossRef]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Adv. Energy Mater. 2017, 7, 1700715. [Google Scholar] [CrossRef]
- Tian, C.; Lin, F.; Doeff, M.M. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties. Acc. Chem. Res. 2018, 51, 89–96. [Google Scholar] [CrossRef]
- Gong, Z.; Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 2011, 4, 3223–3242. [Google Scholar] [CrossRef]
- Gupta, P.; Pushpakanth, S.; Haider, M.A.; Basu, S. Understanding the Design of Cathode Materials for Na-Ion Batteries. ACS Omega 2022, 7, 5605–5614. [Google Scholar] [CrossRef]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene Materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, J.; Ning, G.; Wei, T.; Zhi, L.; Wei, F. Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 2013, 60, 558–561. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, Y.; Shen, X.; Qiu, J.; Lian, J.; Pu, J.; Li, S.; Du, F.-H.; Li, S.-Q.; Ji, Z.; et al. Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries. J. Energy Chem. 2022, 69, 161–173. [Google Scholar] [CrossRef]
- Adams, R.A.; Varma, A.; Pol, V.G. Carbon Anodes for Nonaqueous Alkali Metal-Ion Batteries and Their Thermal Safety Aspects. Adv. Energy Mater. 2019, 9, 1900550. [Google Scholar] [CrossRef]
- Rublova, Y.; Meija, R.; Lazarenko, V.; Andzane, J.; Svirksts, J.; Erts, D. Modification of Single-Walled Carbon Nanotube Networks Anodes for Application in Aqueous Lithium-Ion Batteries. Batteries 2023, 9, 260. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Mand Khan, B.; Chun Oh, W.; Nuengmatch, P.; Ullah, K. Role of graphene-based nanocomposites as anode material for Lithium-ion batteries. Mater. Sci. Eng. B 2023, 287, 116141. [Google Scholar] [CrossRef]
- Mallick, S.; Gayen, D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems—A critical review. J. Energy Storage 2023, 62, 106894. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Babaiee, M.; Baktashian, S.; Zarei-Jelyani, M.; Eqra, R.; Gholami, M. High-Performance Natural Graphite Anode for Lithium-Ion Batteries: Using TiO2 as an Additive. ChemistrySelect 2022, 7, e202201510. [Google Scholar] [CrossRef]
- Choi, M.G.; Lee, Y.-G.; Song, S.-W.; Kim, K.M. Anode properties of titanium oxide nanotube and graphite composites for lithium-ion batteries. J. Power Sources 2010, 195, 8289–8296. [Google Scholar] [CrossRef]
- Fehse, M.; Ventosa, E. Is TiO2(B) the Future of Titanium-Based Battery Materials? ChemPlusChem 2015, 80, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yu, L.; Lou, X.W. (David) Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. Chem 2018, 4, 972–996. [Google Scholar] [CrossRef]
- Lavigne Philippot, M.; Costa, D.; Cardellini, G.; De Sutter, L.; Smekens, J.; Van Mierlo, J.; Messagie, M. Life cycle assessment of a lithium-ion battery with a silicon anode for electric vehicles. J. Energy Storage 2023, 60, 106635. [Google Scholar] [CrossRef]
- Kurzweil, P.; Brandt, K. Chapter 3—Overview of Rechargeable Lithium Battery Systems. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Garche, J., Brandt, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–82. [Google Scholar]
- Berckmans, G.; De Sutter, L.; Marinaro, M.; Smekens, J.; Jaguemont, J.; Wohlfahrt-Mehrens, M.; van Mierlo, J.; Omar, N. Analysis of the effect of applying external mechanical pressure on next generation silicon alloy lithium-ion cells. Electrochim. Acta 2019, 306, 387–395. [Google Scholar] [CrossRef]
- Franco Gonzalez, A.; Yang, N.-H.; Liu, R.-S. Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. J. Phys. Chem. C 2017, 121, 27775–27787. [Google Scholar] [CrossRef]
- Xu, B.; Qian, D.; Wang, Z.; Meng, Y.S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R Rep. 2012, 73, 51–65. [Google Scholar] [CrossRef]
- He, P.; Yu, H.; Li, D.; Zhou, H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 2012, 22, 3680–3695. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4302. [Google Scholar] [CrossRef] [PubMed]
- Nanjundaswamy, K.S.; Padhi, A.K.; Goodenough, J.B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion. 1996, 92, 1–10. [Google Scholar] [CrossRef]
- Armand, M.; Gauthier, M.; Magnan, J.-F.; Ravet, N. Method for Synthesis of Carbon-Coated Redox Materials with Controlled Size. U.S. Patent 7601318B2, 13 October 2009. Available online: https://patents.google.com/patent/US7601318B2/en (accessed on 31 July 2023).
- Chung, S.-Y.; Bloking, J.T.; Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energy Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Lin, C.; Tang, A.; Mu, H.; Wang, W.; Wang, C. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles. J. Chem. 2015, 2015, e104673. [Google Scholar] [CrossRef]
- Ji, K.; Han, J.; Hirata, A.; Fujita, T.; Shen, Y.; Ning, S.; Liu, P.; Kashani, H.; Tian, Y.; Ito, Y.; et al. Lithium intercalation into bilayer graphene. Nat. Commun. 2019, 10, 275. [Google Scholar] [CrossRef]
- Wang, G.X.; Ahn, J.-H.; Lindsay, M.J.; Sun, L.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. Graphite–Tin composites as anode materials for lithium-ion batteries. J. Power Sources 2001, 97–98, 211–215. [Google Scholar] [CrossRef]
- Li, T.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries. J. Power Sources 2008, 184, 473–476. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Kim, Y.-L.; Hong, M.-K.; Lee, S.-M. Carbon-coated Ni20Si80 alloy–graphite composite as an anode material for lithium-ion batteries. J. Power Sources 2005, 141, 159–162. [Google Scholar] [CrossRef]
- Thirugnanam, L.; Palanisamy, M.; Kaveri, S.; Ramaprabhu, S.; Pol, V.G.; Dutta, M. TiO2 nanoparticle embedded nitrogen doped electrospun helical carbon nanofiber-carbon nanotube hybrid anode for lithium-ion batteries. Int. J. Hydrogen Energy 2021, 46, 2464–2478. [Google Scholar] [CrossRef]
- Berardo, E. Modelling the Excited State Properties of TiO2 Nanoparticles. Ph.D. Thesis, UCL (University College London), London, UK, 2015. Available online: https://discovery.ucl.ac.uk/id/eprint/1470301/ (accessed on 31 July 2023).
- Aravindan, V.; Lee, Y.-S.; Yazami, R.; Madhavi, S. TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries. Mater. Today 2015, 18, 345–351. [Google Scholar] [CrossRef]
- Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K.M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588–598. [Google Scholar] [CrossRef]
- Reddy, M.A.; Kishore, M.S.; Pralong, V.; Varadaraju, U.V.; Raveau, B. Lithium Intercalation into Nanocrystalline Brookite TiO2. Electrochem. Solid-State Lett. 2006, 10, A29. [Google Scholar] [CrossRef]
- Kim, D.S.; Chung, D.J.; Bae, J.; Jeong, G.; Kim, H. Surface engineering of graphite anode material with black TiO2−x for fast chargeable lithium ion battery. Electrochim. Acta 2017, 258, 336–342. [Google Scholar] [CrossRef]
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124. [Google Scholar] [CrossRef]
- Mizuno, F.; Yada, C.; Iba, H. 12—Solid-State Lithium-Ion Batteries for Electric Vehicles. In Lithium-Ion Batteries; Pistoia, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 273–291. [Google Scholar]
- Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G. All-solid-state lithium-ion and lithium metal batteries—Paving the way to large-scale production. J. Power Sources 2018, 382, 160–175. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Su, Y.-S. Challenges and Prospects of Lithium–Sulfur Batteries. Acc. Chem. Res. 2013, 46, 1125–1134. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Adair, K.; Zhang, H.; Sun, X. Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application. Electrochem. Energy Rev. 2018, 1, 239–293. [Google Scholar] [CrossRef]
- Chen, L.; Shaw, L.L. Recent advances in lithium–sulfur batteries. J. Power Sources 2014, 267, 770–783. [Google Scholar] [CrossRef]
- Girishkumar, G.; McCloskey, B.; Luntz, A.C.; Swanson, S.; Wilcke, W. Lithium−Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. [Google Scholar] [CrossRef]
- Liu, T.; Vivek, J.P.; Zhao, E.W.; Lei, J.; Garcia-Araez, N.; Grey, C.P. Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chem. Rev. 2020, 120, 6558–6625. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Sun, X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2013, 2, 443–467. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef]
- Lee, S.; Manthiram, A. Can Cobalt Be Eliminated from Lithium-Ion Batteries? ACS Energy Lett. 2022, 7, 3058–3063. [Google Scholar] [CrossRef]
- Rosa Palacín, M. Understanding ageing in Li-ion batteries: A chemical issue. Chem. Soc. Rev. 2018, 47, 4924–4933. [Google Scholar] [CrossRef]
- Lai, X.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Guo, Y.; Bhagat, R.; Zheng, Y. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation 2022, 12, 100169. [Google Scholar] [CrossRef]
- Nandan, R.; Takamori, N.; Higashimine, K.; Badam, R.; Matsumi, N. Black glasses grafted micron silicon: A resilient anode material for high-performance lithium-ion batteries. J. Mater. Chem. A 2022, 10, 15960–15974. [Google Scholar] [CrossRef]
- Hamblen, M. How Electric Vehicles Are Made Safer from Fire, Electrocution. Fierce Electronics, 10 May 2021. Available online: https://www.fierceelectronics.com/electronics/how-electric-vehicles-are-made-safer (accessed on 12 July 2023).
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Schreiber, A.; Rosen, M.; Waetzig, K.; Nikolowski, K.; Schiffmann, N.; Wiggers, H.; Küpers, M.; Fattakhova-Rohlfing, D.; Kuckshinrichs, W.; Guillon, O.; et al. Oxide ceramic electrolytes for all-solid-state lithium batteries—Cost-cutting cell design and environmental impact. Green Chem. 2023, 25, 399–414. [Google Scholar] [CrossRef]
- Cheon, S.-E.; Ko, K.-S.; Cho, J.-H.; Kim, S.-W.; Chin, E.-Y.; Kim, H.-T. Rechargeable Lithium Sulfur Battery: I. Structural Change of Sulfur Cathode During Discharge and Charge. J. Electrochem. Soc. 2003, 150, A796. [Google Scholar] [CrossRef]
- Cheon, S.-E.; Ko, K.-S.; Cho, J.-H.; Kim, S.-W.; Chin, E.-Y.; Kim, H.-T. Rechargeable Lithium Sulfur Battery: II. Rate Capability and Cycle Characteristics. J. Electrochem. Soc. 2003, 150, A800. [Google Scholar] [CrossRef]
- Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sources 2014, 246, 840–845. [Google Scholar] [CrossRef]
- Charbonnel, J.; Darmet, N.; Deilhes, C.; Broche, L.; Reytier, M.; Thivel, P.-X.; Vincent, R. Safety Evaluation of All-Solid-State Batteries: An Innovative Methodology Using In Situ Synchrotron X-ray Radiography. ACS Appl. Energy Mater. 2022, 5, 10862–10871. [Google Scholar] [CrossRef]
- Pecht Michael, S.M. Failure Modes, Mechanisms, and Effects Analysis. In Product Reliability, Maintainability, and Supportability Handbook; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M. Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. J. Electrochem. Soc. 2015, 162, A3084. [Google Scholar] [CrossRef]
- Perea, A.; Dontigny, M.; Zaghib, K. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte. J. Power Sources 2017, 359, 182–185. [Google Scholar] [CrossRef]
- Li, G.; Chen, Z.; Lu, J. Lithium-Sulfur Batteries for Commercial Applications. Chem 2018, 4, 3–7. [Google Scholar] [CrossRef]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium–Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef]
- Sun, J.; Wang, T.; Gao, Y.; Pan, Z.; Hu, R.; Wang, J. Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better? InfoMat 2022, 4, e12359. [Google Scholar] [CrossRef]
- Shen, X.; Li, Y.; Qian, T.; Liu, J.; Zhou, J.; Yan, C.; Goodenough, J.B. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 2019, 10, 900. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 1–26. [Google Scholar] [CrossRef]
- Fu, R.; Choe, S.-Y.; Agubra, V.; Fergus, J. Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode. J. Power Sources 2014, 261, 120–135. [Google Scholar] [CrossRef]
- Ali, Y.; Iqbal, N.; Lee, S. Role of SEI layer growth in fracture probability in lithium-ion battery electrodes. Int. J. Energy Res. 2021, 45, 5293–5308. [Google Scholar] [CrossRef]
Battery Type | Advantages | Disadvantages | References |
---|---|---|---|
Lithium-ion |
|
| [1,2,3,50,51] |
Lead Acid |
|
| [52,53] |
Nickel–Cadmium |
|
| [50,54] |
Sodium–Sulfur |
|
| [55,56,57] |
Lithium-Ion Batteries in EVs | Primary Takeaways | References |
---|---|---|
Battery Fabrication |
| [87] |
Battery Packing |
| [88,89,90,91] |
Energy Storage |
| [92,93,94] |
Battery Management Systems |
| [95,96,97] |
Anode Electrode Materials | ||
---|---|---|
Type of Material-Group | Primary Takeaways | References |
Carbonaceous-based Materials |
| [139,140,141,142,143,144,145] |
Alloyed Carbonaceous Materials |
| [6,146,147] |
Titanium-Based Oxide Materials |
| [148,149,150] |
Conversion-Type Transitional-Metal Compound Materials |
| [6,151] |
Silicon-Based Materials |
| [152,153,154,155] |
Cathode Electrode Materials | ||
Type of Material-Group | Primary Takeaways | References |
Transition Metal–Oxide-Based Materials |
| [156,157,158,159] |
Polyanion-Based Materials |
| [137,160,161,162] |
Conversion-Based Materials |
| [163,164] |
Advancements in Lithium-Ion-Based Batteries for EVs | ||
---|---|---|
Type of Advancement | Primary Takeaways | References |
General Battery Management |
| [179,180] |
Solid-State Li-ion Batteries |
| [181,182,183] |
Lithium Sulfur Batteries |
| [184,185,186] |
Lithium-Air Batteries |
| [187,188,189] |
Challenges in Lithium-ion-based Batteries for EVs | ||
Type of Challenge | Primary Takeaways | References |
Development and Acquisition of Materials |
| [190,191] |
Limited Lifespans |
| [192,193,194] |
Thermal Runaway |
| [22,118,195,196] |
Other Li-ion Battery Issues |
| [197,198,199,200,201,202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ralls, A.M.; Leong, K.; Clayton, J.; Fuelling, P.; Mercer, C.; Navarro, V.; Menezes, P.L. The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles. Materials 2023, 16, 6063. https://doi.org/10.3390/ma16176063
Ralls AM, Leong K, Clayton J, Fuelling P, Mercer C, Navarro V, Menezes PL. The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles. Materials. 2023; 16(17):6063. https://doi.org/10.3390/ma16176063
Chicago/Turabian StyleRalls, Alessandro M., Kaitlin Leong, Jennifer Clayton, Phillip Fuelling, Cody Mercer, Vincent Navarro, and Pradeep L. Menezes. 2023. "The Role of Lithium-Ion Batteries in the Growing Trend of Electric Vehicles" Materials 16, no. 17: 6063. https://doi.org/10.3390/ma16176063