Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Catalysts
2.2. Activity Tests
3. Results
3.1. Characterization of the Catalysts
3.1.1. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
3.1.2. Brunauer–Emmett–Teller (BET)
3.1.3. The Programmed Reduction Temperature of H2
3.1.4. CO2-Temperature-Programmed Desorption (CO2–TPD)
3.1.5. X-ray Diffraction (XRD)
3.1.6. H2 Chemisorption
3.1.7. X-ray Photoelectrons Spectroscopy (XPS)
3.1.8. UV–vis Diffuse Reflectance Spectroscopy (UV–vis–NIR DRS) and Band Gap
3.2. Performance of the Catalysts
Scanning Transmission Electron Microscopy Using Energy Dispersive X-ray Spectroscopy (STEM–EDS) and XPS of the Used Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Méndez-Mateos, D.; Barrio, V.L.; Requies, J.M.; Cambra, J.F. A Study of Deactivation by H2S and Regeneration of a Ni Catalyst Supported on Al2O3, during Methanation of CO2. Effect of the Promoters Co, Cr, Fe and Mo. RSC Adv. 2020, 10, 16551–16564. [Google Scholar] [CrossRef]
- Guo, X.; Gao, D.; He, H.; Traitangwong, A.; Gong, M.; Meeyoo, V.; Peng, Z.; Li, C. Promotion of CO2 Methanation at Low Temperature over Hydrotalcite-Derived Catalysts-Effect of the Tunable Metal Species and Basicity. Int. J. Hydrog. Energy 2020, 46, 518–530. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Maleval, M.; Graça, I.; Lopes, J.M.; Henriques, C. Power-to-Methane over Ni/Zeolites: Influence of the Framework Type. Microporous Mesoporous Mater. 2019, 274, 102–112. [Google Scholar] [CrossRef]
- Pasichnyk, M.; Stanovsky, P.; Polezhaev, P.; Zach, B.; Šyc, M.; Bobák, M.; Jansen, J.C.; Přibyl, M.; Bara, J.E.; Friess, K.; et al. Membrane technology for challenging separations: Removal of CO2, SO2 and NOX from flue and waste gases. Sep. Purif. Technol. 2023, 323, 124436. [Google Scholar] [CrossRef]
- Lakshminarayana, K.G.B.; Seetharamu, S.; Madhusoodana, D.C.; Sharon, O.; Krishna, V. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture. J. Clean. Prod. 2015, 103, 171–196. [Google Scholar] [CrossRef]
- Rahimpour, M.R.; Mazinani, S.; Vaferi, B.; Baktash, M.S. Comparison of two different flow types on CO removal along a two-stage hydrogen permselective membrane reactor for methanol synthesis. Appl. Energy 2011, 88, 41–51. [Google Scholar] [CrossRef]
- Khusnutdinova, J.R.; Garg, J.A.; Milstein, D. Combining Low-Pressure CO2 Capture and Hydrogenation To Form Methanol. ACS Catal. 2015, 5, 2416–2422. [Google Scholar] [CrossRef]
- Nazir, H.; Muthuswamy, N.; Louis, C.; Jose, S.; Prakash, J.; Buan, M.E.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 Economy Realizable in the Foreseeable Future? Part II: H2 Storage, Transportation, and Distribution. Int. J. Hydrog. Energy 2020, 45, 20693–20708. [Google Scholar] [CrossRef]
- Komatsu, K.; Li, H.; Kanma, Y.; Zhu, J.; Toda, I.; Tsuda, Y.; Saitoh, H. Increase in H2 Storage Capacity of Nanoporous Carbon Fabricated from Waste Rice Husk via Improving the Mode of the Reaction Mixture Cooling Down. J. Mater. Res. Technol. 2021, 12, 1203–1211. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012, 2, 2358–2368. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Debek, R.; Motak, M.; Grzybek, T.; Gálvez, M.E.; Da Costa, P. Novel Ni-La-Hydrotalcite Derived Catalysts for CO2 Methanation. Catal. Commun. 2016, 83, 5–8. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Motak, M.; Grzybek, T.; Gálvez, M.E.; Da Costa, P. The Influence of Lanthanum Incorporation Method on the Performance of Nickel-Containing Hydrotalcite-Derived Catalysts in CO2 Methanation Reaction. Catal. Today 2018, 307, 205–211. [Google Scholar] [CrossRef]
- Burger, T.; Koschany, F.; Thomys, O.; Köhler, K.; Hinrichsen, O. CO2 Methanation over Fe- and Mn-Promoted Co-Precipitated Ni-Al Catalysts: Synthesis, Characterization and Catalysis Study. Appl. Catal. A Gen. 2018, 558, 44–54. [Google Scholar] [CrossRef]
- Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO2 Catalysts with High CO2 Methanation Activity and High CH4 Selectivity at Low Temperatures. Int. J. Hydrog. Energy 2012, 37, 5527–5531. [Google Scholar] [CrossRef]
- David, M.; Barrio, V.L.; Requies, M.; Cambra, J.F. Effect of the Addition of Alkaline Earth and Lanthanide Metals for the Modification of the Alumina Support in Ni and Ru Catalysts in CO2 Methanation. Catalysts 2021, 11, 353. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Reish, M.E.; Zhang, D.; Su, N.Q.; Gutiérrez, Y.; Moreno, F.; Yang, W.; Everitt, H.O.; Liu, J. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects. Nano Lett. 2018, 18, 1714–1723. [Google Scholar] [CrossRef]
- Mateo, D.; Albero, J.; García, H. Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule 2019, 3, 1949–1962. [Google Scholar] [CrossRef]
- Halasi, G.; Gazsi, A.; Bánsági, T.; Solymosi, F. Catalytic and Photocatalytic Reactions of H2 + CO2 on Supported Au Catalysts. Appl. Catal. A Gen. 2015, 506, 85–90. [Google Scholar] [CrossRef]
- Sastre, F.; Puga, A.V.; Liu, L.; Corma, A.; García, H. Complete Photocatalytic Reduction of CO2 to Methane by H2 under Solar Light Irradiation. J. Am. Chem. Soc. 2014, 136, 6798–6801. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Lucrédio, A.F.; Bellido, J.D.A.; Assaf, E.M. Effects of Adding La and Ce to Hydrotalcite-Type Ni/Mg/Al Catalyst Precursors on Ethanol Steam Reforming Reactions. Appl. Catal. A Gen. 2010, 388, 77–85. [Google Scholar] [CrossRef]
- Ha, Q.L.M.; Armbruster, U.; Atia, H.; Schneider, M.; Lund, H.; Agostini, G.; Radnik, J.; Vuong, H.T.; Martin, A. Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane. Catalysts 2017, 7, 157. [Google Scholar] [CrossRef]
- Hezam, A.; Namratha, K.; Drmosh, Q.A.; Ponnamma, D.; Wang, J.; Prasad, S.; Ahamed, M.; Cheng, C.; Byrappa, K. CeO2 Nanostructures Enriched with Oxygen Vacancies for Photocatalytic CO2 Reduction. ACS Appl. Nano Mater. 2020, 3, 138–148. [Google Scholar] [CrossRef]
- Guerrero-Urbaneja, P.; García-Sancho, C.; Moreno-Tost, R.; Mérida-Robles, J.; Santamaría-González, J.; Jiménez-López, A.; Maireles-Torres, P. Glycerol Valorization by Etherification to Polyglycerols by Using Metal Oxides Derived from MgFe Hydrotalcites. Appl. Catal. A Gen. 2014, 470, 199–207. [Google Scholar] [CrossRef]
- García-Sancho, C.; Guil-López, R.; Pascual, L.; Maireles-Torres, P.; Navarro, R.M.; Fierro, J.L.G. Optimization of Nickel Loading of Mixed Oxide Catalyst Ex-Hydrotalcite for H2 Production by Methane Decomposition. Appl. Catal. A Gen. 2017, 548, 71–82. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Baran, R.; Dębek, R.; Motak, M.; Grzybek, T.; Gálvez, M.E.; Da Costa, P. The Influence of Nickel Content on the Performance of Hydrotalcite-Derived Catalysts in CO2 Methanation Reaction. Int. J. Hydrog. Energy 2017, 42, 23548–23555. [Google Scholar] [CrossRef]
- Italiano, C.; Balzarotti, R.; Vita, A.; Latorrata, S.; Fabiano, C.; Pino, L.; Cristiani, C. Preparation of Structured Catalysts with Ni and Ni–Rh/CeO2 Catalytic Layers for Syngas Production by Biogas Reforming Processes. Catal. Today 2016, 273, 3–11. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Iordanidis, A.; Polychronopoulou, K.; Yentekakis, I.V.; Goula, M.A. Studying the Stability of Ni Supported on Modified with CeO2 Alumina Catalysts for the Biogas Dry Reforming Reaction. Mater. Today Proc. 2018, 5, 27607–27616. [Google Scholar] [CrossRef]
- Gao, J.; Jia, C.; Li, J.; Zhang, M.; Gu, F.; Xu, G.; Zhong, Z.; Su, F. Ni/Al2O3 Catalysts for CO Methanation: Effect of Al2O3 Supports Calcined at Different Temperatures. J. Energy Chem. 2013, 22, 919–927. [Google Scholar] [CrossRef]
- Coleman, L.J.I.; Epling, W.; Hudgins, R.R.; Croiset, E. Ni/Mg-Al Mixed Oxide Catalyst for the Steam Reforming of Ethanol. Appl. Catal. A Gen. 2009, 363, 52–63. [Google Scholar] [CrossRef]
- Radlik, M.; Motak, M.; Elena, M.; Turek, W.; Da, P.; Grzybek, T. Ni-Containing Ce-Promoted Hydrotalcite Derived Materials as Catalysts for Methane Reforming with Carbon Dioxide at Low Temperature—On the Effect of Basicity. Catal. Today 2015, 257, 59–65. [Google Scholar] [CrossRef]
- Ghungrud, S.A.; Dewoolkar, K.D.; Vaidya, P.D. Cerium-Promoted Bi-Functional Hybrid Materials Made of Ni, Co and Hydrotalcite for Sorption-Enhanced Steam Methane Reforming (SESMR). Int. J. Hydrog. Energy 2019, 44, 694–706. [Google Scholar] [CrossRef]
- Montañez, M.K.; Molina, R.; Moreno, S. Nickel Catalysts Obtained from Hydrotalcites by Coprecipitation and Urea Hydrolysis for Hydrogen Production. Int. J. Hydrog. Energy 2014, 39, 8225–8237. [Google Scholar] [CrossRef]
- Ni, M.O.M.; Tirsoaga, A.; Visinescu, D. Eco-Friendly Combustion-Based Synthesis of Metal. J. Nanoparticle Res. 2011, 4, 6397–6408. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W. NiO—MgO Solid Solution Prepared by Sol—Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance. Catal. Lett. 2016, 146, 238–248. [Google Scholar] [CrossRef]
- Lucrédio, A.F.; Jerkiewickz, G.; Assaf, E.M. Nickel Catalysts Promoted with Cerium and Lanthanum to Reduce Carbon Formation in Partial Oxidation of Methane Reactions. Appl. Catal. A Gen. 2007, 333, 90–95. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Siakavelas, G.I.; Dou, B.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Polychronopoulou, K.; Goula, M.A. Nickel Supported on AlCeO3 as a Highly Selective and Stable Catalyst for Hydrogen Production via the Glycerol Steam Reforming Reaction. Catalysts 2019, 9, 411. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database; NIST standard reference database 20 version 4.1.; NIST: Gaithersburg, MD, USA, 2012. [CrossRef]
- Li, N.; Zou, X.; Liu, M.; Wei, L.; Shen, Q.; Bibi, R.; Xu, C.; Ma, Q.; Zhou, J. Enhanced Visible Light Photocatalytic Hydrogenation of CO2 into Methane over a Pd/Ce-TiO2 Nanocomposition. J. Phys. Chem. C 2017, 121, 25795–25804. [Google Scholar] [CrossRef]
- Choudhury, B.; Chetri, P.; Choudhury, A. Oxygen Defects and Formation of Ce3+ Affecting the Photocatalytic Performance of CeO2 Nanoparticles. RSC Adv. 2014, 4, 4663–4671. [Google Scholar] [CrossRef]
- Damyanova, S.; Pawelec, B.; Palcheva, R.; Karakirova, Y.; Capel-Sanchez, M.C.; Tyuliev, G.; Gaigneaux, E.; Fierro, J.L.G. Structure and Surface Properties of Ceria-Modified Ni-Based Catalysts for Hydrogen Production. Appl. Catal. B Environ. 2018, 225, 340–353. [Google Scholar] [CrossRef]
- Lance, R.; Tate, J. Optical Analysis of Titania: Band Gaps of Brookite, Rutile and Anatase. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2018. [Google Scholar]
- Pawar, G.S.; Elikkottil, A.; Pesala, B.; Tahir, A.A.; Mallick, T.K. Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation. Int. J. Hydrog. Energy 2019, 44, 578–586. [Google Scholar] [CrossRef]
- Picciotto, A.; Pucker, G.; Torrisi, L.; Bellutti, P.; Caridi, F.; Bagolini, A. Evidence of Plasmon Resonances of Nickel Particles Deposited by Pulsed Laser Ablation. Radiat. Eff. Defects Solids 2008, 163, 513–518. [Google Scholar] [CrossRef]
- Anbarasu, S.; Ilangovan, S.; Usharani, K.; Prabhavathi, A.; Suganya, M.; Balamurugan, S.; Kayathiri, C.; Karthika, M.; Nagarethinam, V.S.; Balu, A.R. Visible light mediated photocatalytic activity of Ni-doped Al2O3 nanoparticles. Surfaces Interfaces 2020, 18, 100416. [Google Scholar] [CrossRef]
- Xu, M.; Pan, G.; Meng, Y.; Guo, Y.; Wu, T.; Chen, H. Effect of Ce3+ on the photocatalytic activity of MAlCe ternary hydrotalcites-like compounds in methylene blue photodegradation. Appl. Clay Sci. 2019, 170, 46–56. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, W.; Chen, S.; Chu, W. Cerium promoted nano nickel catalysts Ni-Ce/CNTs and Ni-Ce/Al2O3 for CO2 methanation. Integr. Ferroelectr. 2014, 151, 116–125. [Google Scholar] [CrossRef]
- Kim, M.J.; Youn, J.R.; Kim, H.J.; Seo, M.W.; Lee, D.; Go, K.S.; Lee, K.B.; Jeon, S.G. Effect of surface properties controlled by Ce addition on CO2 methanation over Ni/Ce/Al2O3 catalyst. Int. J. Hydrogen Energy. 2020, 45, 24595–24603. [Google Scholar] [CrossRef]
- De Saegher, T.; Lauwaert, J.; Hanssen, J.; Bruneel, E.; Van Zele, M.; Van Geem, K.; De Buysser, K.; Verberckmoes, A. Monometallic Cerium Layered Double Hydroxide Supported Pd-Ni Nanoparticles as High Performance Catalysts for Lignin Hydrogenolysis. Materials 2020, 13, 691. [Google Scholar] [CrossRef]
- Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Phanichphant, S.; Nakaruk, A. Photocatalytic Activity under Visible Light of Fe-Doped CeO2 Nanoparticles Synthesized by Flame Spray Pyrolysis. Ceram. Int. 2013, 39, 3129–3134. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Fan, W.; Geng, Z.; Feng, L. Enhancement of the Photocatalytic Performance of Ni-Loaded TiO2 Photocatalyst under Sunlight. Ceram. Int. 2014, 40, 3887–3893. [Google Scholar] [CrossRef]
- Chen, J.; Albella, P.; Pirzadeh, Z.; Alonso-gonzález, P.; Huth, F.; Bonetti, S.; Bonanni, V.; Åkerman, J.; Nogués, J.; Vavassori, P.; et al. Plasmonic Nickel Nanoantennas. Small 2011, 7, 2341–2347. [Google Scholar] [CrossRef]
- Lan YChuang, H.; Mario, P.; Yi-Jun, X.J. Origin of enhancing the photocatalytic performance of TiO2 for artificial photoreduction of CO2 through a SiO2 coating strategy. Phys. Chem. C. 2016, 120, 265–273. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chemie Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
Sample | Metal Precursors | CO2 Conversion (%) | CH4 Selectivity (%) | T (K) | GHSV (h−1) | Stoichiometry | Flow (mL·min−1) | Refs. |
---|---|---|---|---|---|---|---|---|
Hydrotalcite | Al, La, Mg, Ni | 46.5; 75 | 98; 99 | 523; 573 | 12 | H2/CO2/Ar = 12/3/5 | 100 | [13,14] |
Hydrotalcite | Ni, Mg, Al | 42–92 | 85; ≃100 | 523; 623 | 2400; 40–60 | H2/CO2 = 4/1 | 40; 200–300 | [2] |
Hydrotalcite | Fe, Mn, Ni, Al | 85–94 | >99 | 523–573 | 200.000 | H2/CO2/Ar = 4/1/5 | 150 NL h−1 gcat−1 | [15] |
Ni/CeO2 Ni/Al2O3 Ni/TiO2 | Ni, Ce, Al | ≃90 ≃57 ≃30 | ≃100 ≃97 ≃99 | 623 | 10 | H2/CO2 = 4/1 | 100 | [16] |
Ni/Al2O3 Ni–La/Al2O3 Ni–Ce/Al2O3 | Ni, Ca, La, Mg, Ce, Ba | 86 99 95 | ≃99 | 673 | 38.3 | H2/CO2 = 4/1 | 280 | [17] |
Rh/TiO2 | Rh, Ti | 5–16 | >98 | 623 | N/A | H2/CO2/Ar = 6.1/1.6/2.4 | 250 | [18] a,b,c |
Ru/STO | Ru, Ti | 89.5% in 1 h | 12.6 mmol/(g·h) | 423 | 44.6 | H2/CO2 = 4/1 | 80 | [19] d |
Au/TiO2 K–Au/CeO2 Au/CeO2 | Au, Ti, Ce | 20–50 5–50 5–38 | N/A | 573–773 | 3000–6000 | H2/CO2 = 4/1 | N/A | [20] f |
Ni/SiO2·Al2O3 | Ni, Si, Al | 94.9 e | 97.2 | <423 | N/A | H2/CO2/N2 = 7/1.5/1.5 | N/A | [21] |
Metal Content (wt.%) | ||||
---|---|---|---|---|
Ni | Ce | Mg | Al | |
HTC 1 | 27 | - | 50 | 23 |
HTC 2 | 26 | 4 | 48 | 21 |
HTC 3 | 25 | 11 | 46 | 18 |
HTC 4 | 23 | 18 | 43 | 16 |
Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|
Ce | Ni | Mg | Al | SBET (m2/g) a | Vtot (cm3/g) b | Dr (nm) c | |
HTC 1 | 27.2 | 50.0 | 22.6 | 177.0 | 0.50 | 5.5 | |
HTC 2 | 4.1 | 25.8 | 49.2 | 20.9 | 181.7 | 0.43 | 5.6 |
HTC 3 | 11.1 | 24.4 | 46.0 | 18.5 | 164.6 | 0.27 | 6.5 |
HTC 4 | 17.8 | 22.7 | 43.9 | 15.6 | 154.2 | 0.37 | 6.2 |
13Ni/Al2O3 | 12.6 | 178.3 | 0.33 | 6.6 | |||
25Ni/Al2O3 | 26.5 | 191.8 | 0.39 | 6.1 |
Catalyst | Total Basicity (mmol/g) | Contribution of Weak Sites | Contribution of Moderate Sites | Contribution of Strong Sites |
---|---|---|---|---|
HTC 1 | 0.35 | 28.2% | 47.2% | 24.6% |
HTC 2 | 0.35 | 23.2% | 49.3% | 27.5% |
HTC 3 | 0.31 | 30.8% | 44.0% | 25.2% |
HTC 4 | 0.35 | 21.9% | 49.5% | 28.6% |
13Ni/Al2O3 | 0.17 | 13.2% | 30.8% | 56.0% |
25Ni/Al2O3 | 0.34 | 15.2% | 35.0% | 49.8% |
Reflection (003) | Reflection (110) | Cell Parameter “c” | |
---|---|---|---|
HTC 1 NC | 12 nm | 15 nm | 2.34 nm |
HTC 2 NC | 8 nm | 16 nm | 2.34 nm |
HTC 3 NC | 8 nm | 13 nm | 2.34 nm |
HTC 4 NC | 13 nm | 16 nm | 2.36 nm |
Sample | Metal Dispersion (%) | Metallic Surface Area (m2/g Sample) | Active Particle Diameter (nm) |
---|---|---|---|
25Ni/Al2O3 | 2.02 | 3.36 | 50.1 |
13Ni/Al2O3 | 1.19 | 1.03 | 84.7 |
HTC 1 | 1.4 | 2.46 | 70.7 |
HTC 2 | 2.28 | 4.13 | 44.4 |
HTC 3 | 1.6 | 2.60 | 63.2 |
HTC 4 | 1.2 | 1.84 | 83.3 |
Reduced Catalyst XPS | Calcined Catalyst ICP | |||
---|---|---|---|---|
Ce/Al | Ni/Al | Ce/Al | Ni/Al | |
25Ni/Al2O3 | 0.163 | 0.307 | ||
13Ni/Al2O3 | 0.067 | 0.125 | ||
HTC 1 | 0.190 | 0.554 | ||
HTC 2 | 0.024 | 0.173 | 0.038 | 0.566 |
HTC 3 | 0.073 | 0.157 | 0.116 | 0.608 |
HTC 4 | 0.118 | 0.168 | 0.220 | 0.668 |
(A) | 573 K | 623 K | (B) | 473 K | 523 K |
---|---|---|---|---|---|
HTC 1 | 70 | 12.6 | HTC 1 | 0 | 6 |
HTC 2 | 72.7 | 5.4 | HTC 2 | 0 | 5.4 |
HTC 3 | 64.2 | 5 | HTC 3 | 39.6 | 6 |
HTC 4 | 74 | 74 | HTC 4 | 48 | 0 |
25Ni/Al2O3 | 66.3 | 45.8 | 25Ni/Al2O3 | 0 | 66.7 |
13Ni/Al2O3 | 0 | 13.3 | 13Ni/Al2O3 | 0 | 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canales, R.; Barrio, V.L. Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light. Materials 2023, 16, 5907. https://doi.org/10.3390/ma16175907
Canales R, Barrio VL. Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light. Materials. 2023; 16(17):5907. https://doi.org/10.3390/ma16175907
Chicago/Turabian StyleCanales, Rafael, and Victoria Laura Barrio. 2023. "Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light" Materials 16, no. 17: 5907. https://doi.org/10.3390/ma16175907
APA StyleCanales, R., & Barrio, V. L. (2023). Photo- and Thermocatalytic CO2 Methanation: A Comparison of Ni/Al2O3 and Ni–Ce Hydrotalcite-Derived Materials under UV and Visible Light. Materials, 16(17), 5907. https://doi.org/10.3390/ma16175907