Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, J.C. Business Directions and Materials Challenges for the Aircraft Engine Industry. Acta Metall. Sin. 1996, 9, 407. [Google Scholar]
- Sah, J.P.; Richardson, G.J.; Sellars, C.M. Grain-Size Effects during Dynamic Recrystallization of Nickel Metal Science. Met. Sci. 1974, 8, 325–331. [Google Scholar] [CrossRef]
- Collins, D.M.; Conduit, B.D.; Stone, H.J.; Hardy, M.C.; Conduit, G.J.; Mitchell, R.J. Grain growth behaviour during near-γ′ solvus thermal exposures in a polycrystalline nickel-base superalloy. Acta Mater. 2013, 61, 3378–3391. [Google Scholar] [CrossRef]
- Semiatin, S.L.; McClary, K.E.; Rollett, A.D.; Roberts, C.G.; Payton, E.J.; Zhang, F.; Gabb, T.P. Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy. Metall. Mater. Trans. A 2012, 43, 1649–1661. [Google Scholar] [CrossRef]
- Mandal, S.; Jayalakshmi, M.; Bhaduri, A.K.; Subramanya Sarma, V. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N). Metall. Mater. Trans. A 2014, 45, 5645–5656. [Google Scholar] [CrossRef]
- Matsui, T.; Takizawa, H.; Kikuchi, H.; Wakita, S. The Microstructure Prediction of Alloy720LI for Turbine Disk Applications. In Proceedings of the Superalloys 2000, 9th International Symposium on Superalloys, Seven Springs, PA, USA, 17–21 September 2000; pp. 127–133. [Google Scholar] [CrossRef]
- Na, Y.S.; Yeom, J.T.; Park, N.K.; Lee, J.Y. Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator. J. Mater. Process. Technol. 2003, 141, 337–342. [Google Scholar] [CrossRef]
- Ryan, N.D.; McQueen, H.J. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel. J. Mater. Process. Technol. 1990, 21, 177–199. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Z.; Cai, B.; Zhou, N.; Magdysyuk, O.; Gao, Y.; Srivatsa, S.; Tan, L.; Jiang, L. Formation mechanism of abnormally large grains in a polycrystalline nickel-based superalloy during heat treatment processing. Acta Mater. 2019, 168, 287–298. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Najafizadeh, A. A new method for evaluation of friction in bulk metal forming. J. Mater. Process. Technol. 2004, 152, 136–143. [Google Scholar] [CrossRef]
- Mandal, S.; Sivaprasad, P.V.; Dube, R.K. Kinetics, mechanism and modelling of microstructural evolution during thermomechanical processing of a 15Cr–15Ni–2.2Mo–Ti modified austenitic stainless steel. J. Mater. Sci. 2007, 42, 2724–2734. [Google Scholar] [CrossRef]
- Yeom, J.T.; Lee, C.S.; Kim, J.H.; Park, N.K. Finite-element analysis of microstructure evolution in the cogging of an Alloy 718 ingot. Mater. Sci. Eng. A 2007, 449–451, 722–726. [Google Scholar] [CrossRef]
- Sakui, S.; Sakai, T.; Takeishi, K. Hot Deformation of Austenite in a Plain Carbon Steel. Trans. Iron Steel Inst. Jpn. 1977, 17, 718–725. [Google Scholar] [CrossRef]
- Shakib, M.; Perkins, K.M.; Bray, S.E.; Siviour, C.R. Development of a high temperature flow stress model for AerMet 100 covering several orders of magnitude of strain rate. Mater. Sci. Eng. A 2016, 657, 26–32. [Google Scholar] [CrossRef]
- Solhjoo, S. A note on “Barrel Compression Test”: A method for evaluation of friction. Comput. Mater. Sci. 2010, 49, 435–438. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kobayashi, S.; Oh, S.I.; Altan, T. Metal Forming and the Finite-Element Method; Oxford University Press: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Poliak, E.I.; Jonas, J.J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996, 44, 127–136. [Google Scholar] [CrossRef]
- Semiatin, S.L.; Weaver, D.S.; Goetz, R.L.; Thomas, J.P.; Turner, T.J. Deformation and Recrystallization during Thermomechanical Processing of a Nickel-Base Superalloy Ingot Material. Mater. Sci. Forum 2007, 550, 129–140. [Google Scholar] [CrossRef]
- Eriksson, E.; Hanning, F.; Andersson, J.; Colliander, M.H. The Effect of Grain Boundary Carbides on Dynamic Recrystallization During Hot Compression of Ni-Based Superalloy Haynes 282TM. Metall. Mater. Trans. A 2022, 53, 29–38. [Google Scholar] [CrossRef]
- Tan, L.; Huang, Z.; Liu, F.; He, G.; Wang, X.; Huang, L.; Zhang, Y.; Jiang, L. Effects of strain amount and strain rate on grain structure of a novel high Co nickel-based polycrystalline superalloy. Mater. Des. 2017, 131, 60–68. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Huang, L.; Srivatsa, S.; Zhou, K.; Huang, Z.; Jiang, L. Correction of flow stress data due to non-homogeneous deformation and thermal conditions during hot compression testing of a polycrystalline nickel-base superalloy. J. Mater. Sci. 2021, 56, 7727–7739. [Google Scholar] [CrossRef]
- Mejía, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Mater. Sci. Eng. A 2011, 528, 4133–4140. [Google Scholar] [CrossRef]
- Roberts, W.; Ahlblom, B. A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 1978, 26, 801–813. [Google Scholar] [CrossRef]
- McQueen, H.J.; Ryan, N.D. Constitutive analysis in hot working. Mater. Sci. Eng. A 2002, 322, 43–63. [Google Scholar] [CrossRef]
- Ravichandran, N. Application of Dynamic Recrystallization Model for the Prediction of Microstructure During Hot Working. J. Mater. Eng. Perform. 2003, 12, 653–655. [Google Scholar] [CrossRef]
- Jonas, J.J. Dynamic Recrystallization–Scientific Curiosity of Industrial Tool? Mater. Sci. Eng. A 1994, 184, 155–165. [Google Scholar] [CrossRef]
- Mandal, S.; Bhaduri, A.K.; Subramanya Sarma, V. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel. Metall. Mater. Trans. A 2012, 43, 2056–2068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, S.; Jiang, L.; Srivatsa, S.; Huang, Z. Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy. Materials 2023, 16, 5776. https://doi.org/10.3390/ma16175776
Wang J, Zhang S, Jiang L, Srivatsa S, Huang Z. Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy. Materials. 2023; 16(17):5776. https://doi.org/10.3390/ma16175776
Chicago/Turabian StyleWang, Jingzhe, Siyu Zhang, Liang Jiang, Shesh Srivatsa, and Zaiwang Huang. 2023. "Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy" Materials 16, no. 17: 5776. https://doi.org/10.3390/ma16175776
APA StyleWang, J., Zhang, S., Jiang, L., Srivatsa, S., & Huang, Z. (2023). Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy. Materials, 16(17), 5776. https://doi.org/10.3390/ma16175776