Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Outdoor Environment
2.2. Atmospheric Corrosion Monitoring
2.3. Atmospheric Corrosion Modeling
2.4. Calibration Using Bayesian Network
2.5. Framework for the Study
3. Results and Discussion
3.1. Atmospheric Corrosion Monitoring
3.2. Atmospheric Corrosion Modeling
3.3. Calibration and Validation
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Findlay, S.J.; Harrison, N.D. Why aircraft fail. Mater. Today 2002, 5, 18–25. [Google Scholar] [CrossRef]
- Co, N.E.C.; Burns, J.T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior. Int. J. Fatigue 2017, 103, 234–247. [Google Scholar] [CrossRef]
- Popova, K.; Prošek, T. Corrosion monitoring in atmospheric conditions: A review. Metals 2022, 12, 171. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-044495-6. [Google Scholar]
- Li, L.; Chakik, M.; Prakash, R. A review of corrosion in aircraft structures and graphene-based sensors for advanced corrosion monitoring. Sensors 2021, 21, 2908. [Google Scholar] [CrossRef] [PubMed]
- Alcántara, J.; de la Fuente, D.; Chico, B.; Simancas, J.; Díaz, I.; Morcillo, M. Marine atmospheric corrosion of carbon steel: A review. Materials 2017, 10, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Lee, D.; Park, S.; Kim, M.-S.; Choi, D. The effect of aircraft parking environment on atmospheric corrosion severity. Corros. Sci. Technol. 2021, 20, 94–104. [Google Scholar] [CrossRef]
- ISO 9223; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Classification, Determination and Estimation. International Organization for Standardization: Geneva, Switzerland, 2012.
- Lee, D.; Huang, Y.; Achenbach, J.D. A comprehensive analysis of the growth rate of stress corrosion cracks. Proc. R. Soc. A 2015, 471, 20140703. [Google Scholar] [CrossRef]
- Fan, Y.; Pan, J.; Wu, Z.; Li, B.; Wang, Z. A method for predicting the corrosion behavior of structural steel under atmosphere. Buildings 2023, 13, 253. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, H.; Wang, X.; Zhao, Y. Data mining to atmospheric corrosion process based on evidence fusion. Materials 2021, 14, 6954. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, D.; Kelly, R.G. Galvanically induced intergranular corrosion of AA5083-H131 under atmospheric exposure conditions: Part 2—Modeling of the damage distribution. Corrosion 2013, 69, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, D.; Shi, Y.; Kelly, R. Modeling of Galvanic Interactions between AA5083 and Steel under Atmospheric Condition. In Proceedings of the 2011 COMSOL Wordwide Conference, Boston, MA, USA, 13–15 October 2011. [Google Scholar]
- Li, W.; Liu, K.; Wu, J.; Lian, Q.; Qiang, Y.; Pan, J.; Jin, Y. Numerical simulation of carbon steel atmospheric corrosion under varying electrolyte-film thickness and corrosion product porosity. NPJ Mater. Degrad. 2023, 7, 3. [Google Scholar] [CrossRef]
- Al-Abboodi, H.; Fan, H.; Mahmood, I.A.; Al-Bahrani, M. Experimental Investigation and Numerical Simulation for Corrosion Rate of Amorphous/Nano-Crystalline Coating Influenced by Temperatures. Nanomaterials 2021, 11, 3298. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, G.; Yang, J.; Ding, Y.; Ding, Q.; Wang, Y. Chloride ion transport properties in lightweight ultra-high-performance concrete with different lightweight aggregate particle sizes. Materials 2022, 15, 6626. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shi, H.; Liu, W.; Zhao, A.; Pan, G.; Huang, A.; Yu, Y.; Ma, L. Study on the Preparation and Corrosion Resistance Properties of Superhydrophobic Coatings on Galvanized Steel. Metals 2023, 13, 260. [Google Scholar] [CrossRef]
- Abbott, W.H. A Decade of Corrosion Monitoring in the World’s Military Operating Environments: A Summary of Results; Battelle Columbus Operations: Columbus, OH, USA, 2008. [Google Scholar]
- ASTM G1-3; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2003.
- Choi, W.; Lee, D.; Bahn, C.B. Quantitative analysis methods of chloride deposition on silver for atmospheric corrosion monitoring in South Korea. Corrosion 2021, 77, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Tsoutsani, R.S. Polarization Curves Modelling Concerning the Corrosion Behavior of Naval Steels and Experimental Validation. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2016. [Google Scholar]
- Do, C.B.; Batzoglou, S. What is the expectation maximization algorithm? Nat. Biotechnol. 2008, 26, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Lee, D. Algorithm for determination of aircraft wash interval using atmospheric corrosion monitoring data of air bases and artificial neural network. Corros. Sci. Technol. 2023, in press. [Google Scholar]
- Santana, J.J.; Ramos, A.; Rodriguez-Gonzalez, A.; Vasconcelos, H.C.; Mena, V.; Fernández-Pérez, B.M.; Souto, R.M. Shortcomings of international standard ISO 9223 for the Classification, Determination, and Estimation of Atmosphere Corrosivities in Subtropical Archipelagic Conditions—The Case of the Canary Islands (Spain). Metals 2019, 9, 1105. [Google Scholar] [CrossRef] [Green Version]
- Corvo, F.; Pérez, T.; Martin, Y.; Reyes, J.; Dzib, L.R.; González, J.A.; Castañeda, A. Corrosion research frontiers. Atmospheric corrosion in tropical climate. On the concept of time of wetness and its interaction with contaminants deposition. In Electroanalytical Chemistry: New Research; Smithe, G.M., Ed.; Nova Science Publishers: New York, NY, USA, 2008; pp. 62–91. [Google Scholar]
Environment | Coastal | Inland |
---|---|---|
Unsheltered | , | , , , |
Sheltered | , , | , , , |
Variable | Distribution | Prior (Mean, SD) | Posterior (Mean, SD) |
---|---|---|---|
log(θ0) | Normal | −4.11, 0.362 | −3.1985, 0.6814 |
θ1 | Normal | 2.283, 0.2543 | 0.4411, 0.4888 |
θ2 | Normal | 3.022, 0.5031 | 3.4526, 0.5669 |
Model | Sum-of-Squares Error | Root-Mean-Squared Error |
---|---|---|
Physics-based model | 1.99587 | 0.391827 |
Physics-based model (logarithmic transformation) | 220.602 | 4.11939 |
Calibrated model (logarithmic transformation) | 6.15466 | 0.688066 |
Calibrated model | 1.23354 | 0.308038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, T.; Lee, D. Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network. Materials 2023, 16, 5326. https://doi.org/10.3390/ma16155326
Choi T, Lee D. Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network. Materials. 2023; 16(15):5326. https://doi.org/10.3390/ma16155326
Chicago/Turabian StyleChoi, Taesu, and Dooyoul Lee. 2023. "Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network" Materials 16, no. 15: 5326. https://doi.org/10.3390/ma16155326
APA StyleChoi, T., & Lee, D. (2023). Physics-Informed, Data-Driven Model for Atmospheric Corrosion of Carbon Steel Using Bayesian Network. Materials, 16(15), 5326. https://doi.org/10.3390/ma16155326