Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyers, M.A.; Mishra, A.; Benson, D.D. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Edelstein, A.S.; Murday, J.S.; Rath, B.B. Challenges in nanomaterials design. Prog. Mater. Sci. 1997, 42, 5–21. [Google Scholar] [CrossRef]
- Lu, K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng. R Rep. 1996, 16, 161–221. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Froes, F.H. Production of nanostructure titanium-based alloys by mechanical alloying. Nanostruct. Mater. 1992, 1, 191–196. [Google Scholar] [CrossRef]
- Inoue, A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 1998, 43, 365–520. [Google Scholar] [CrossRef]
- Boylan, K.; Ostrander, D.; Erb, U.; Palumbo, G.; Aust, K.T. An in-situ tem study of the thermal stability of nanocrystalline Ni-P. Scr. Metall. Mater. 1991, 25, 2711–2716. [Google Scholar] [CrossRef]
- Palumbo, G.; Erb, U.; Aust, K.T. Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater. 1990, 24, 2347–2350. [Google Scholar] [CrossRef]
- Wloch, G.; Skrzekut, T.; Sobota, J.; Woźnicki, A.; Cisoń, J. The structure and mechanical properties of plastically consolidated Al-Ni alloy. Key Eng. Mater. 2016, 682, 245–251. [Google Scholar] [CrossRef]
- Noga, P.; Piotrowicz, A.; Skrzekut, T.; Zwoliński, A.; Strzępek, P. Effect of various forms of aluminum 6082 on the mechanical properties, microstructure and surface modification of the profile after extrusion process. Materials 2021, 14, 5066. [Google Scholar] [CrossRef]
- Skrzekut, T.; Kula, A.; Blaz, L. Effect of annealing temperature on the structure of mechanically alloyed Al-AgO composite. In Proceedings of the METAL 2015—24th International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic, 3–5 June 2015; pp. 1639–1643. [Google Scholar]
- Tong, H.Y.; Wang, J.T.; Ding, B.Z.; Jiang, H.G.; Lu, K. The structure and properties of nanocrystalline Fe78B13Si9 alloy. J. Non-Cryst. Solids 1992, 150, 444–447. [Google Scholar] [CrossRef]
- Sanders, P.G.; Youngdahl, C.J.; Weertman, J.R. The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng. A 1997, 234–236, 77–82. [Google Scholar] [CrossRef]
- Jaworska, L.; Skrzekut, T.; Stepień, M.; Pałka, P.; Boczkal, G.; Zwoliński, A.; Noga, P.; Podsiadło, M.; Wnuk, R.; Ostachowski, P. The Pressure Compaction of Zr-Nb Powder Mixtures and Selected Properties of Sintered and KOBO-Extruded Zr-xNb Materials. Materials 2021, 14, 3172. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ni, S.; Liao, X.; Song, M.; Zhu, Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Zhang, Y. Inhomogeneous deformation in metallic glasses. Mater. Sci. Technol. 2008, 24, 379–391. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Blaz, L.; Sugamata, M.; Wloch, G.; Sobota, J.; Kula, A. Structure and consolidation od rapidly solidified Meso10 alloy flakes. J. Alloys Compd. 2010, 506, 179–187. [Google Scholar] [CrossRef]
- Zygmunt-Kiper, M.; Blaz, L.; Sugamata, M. Effect of magnesium addition and rapid solidification procedure on structure and mechanical properties of Al-Co alloy. Arch. Metall. Mater. 2013, 58, 397–406. [Google Scholar] [CrossRef][Green Version]
- Salamci, E.; Cochrane, R.F. Microstructure and mechanical properties of spray deposited and extruded 7000 series aluminium alloys. Mater. Sci. Technol. 2003, 19, 1130–1136. [Google Scholar] [CrossRef]
- Trivedi, R.; Jin, F.; Anderson, I.E. Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys. Acta Mater. 2003, 51, 289–300. [Google Scholar] [CrossRef]
- Paulin, I.; Donik, C.; Cvahte, P.; Godec, M. Bimodal Microstructure Obtained by Rapid Solidification to Improve the Mechanical and Corrosion Properties of Aluminum Alloys at Elevated Temperature. Metals 2021, 11, 230. [Google Scholar] [CrossRef]
- Jung, S.; Park, Y.; Lee, Y. A Novel Approach to Investigate the Superheating Grain Refinement Process of Aluminum-Bearing Magnesium Alloys Using Rapid Solidification Process. Materials 2023, 16, 4799. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Xiang, Z.; Ma, X.; Huang, J.; Zhao, Y.; Li, J.; Wang, Z.; Shi, G.; Chen, Z. Investigation of Microstructures and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy Prepared by Rapid Solidification and Hot Extrusion. Metals 2023, 13, 293. [Google Scholar] [CrossRef]
- Chaieb, O.; Olufayo, O.A.; Songmene, V.; Jahazi, M. Investigation on Surface Quality of a Rapidly Solidified Al–50%Si Alloy Component for Deep-Space Applications. Materials 2022, 13, 3412. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, M.; Furushiro, Y.; Koizumi, Y. Effect of Rapid Heating and Cooling Conditions on Microstructure Formation in Powder Bed Fusion of Al-Si Hypoeutectic Alloy: A Phase-Field Study. Materials 2022, 15, 6092. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Yang, B.; Milkereit, B.; Liu, D.; Spronger, A.; Rettenmayr, M.; Schick, C.; Keßler, O. Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter. Materials 2021, 14, 2920. [Google Scholar] [CrossRef]
- Haghshenas, M.; Jamali, J. Assessment of circumferential cracks in hypereutectic Al-Si clutch housings. Case Stud. Eng. Fail. Anal. 2017, 8, 11–20. [Google Scholar] [CrossRef]
- Ye, H. An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications. J. Mater. Eng. Perform. 2003, 12, 288–297. [Google Scholar] [CrossRef]
- PN-EN ISO 6892-1:2020-05; Metals—Tensile Test—Room Temperature Test Method. Polish Committee for Standardization: Warsaw, Poland, 2020.
- Rajabi, M.; Vahidi, M.; Simchi, A.; Davami, P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al–20Si–5Fe alloys. Mater. Charact. 2009, 60, 1370–1381. [Google Scholar] [CrossRef]
- Ernst, F. Metal-oxide interfaces. Mater. Sci. Eng. R Rep. 1995, 14, 97–156. [Google Scholar] [CrossRef]
- Saito, T.; Shoji, E.; Kubo, M.; Tsukada, T.; Kikugawa, G.; Surblys, D. Evaluation of the work of adhesion at the interface between a surface-modified metal oxide and an organic solvent using molecular dynamics simulations. J. Chem. Phys. 2021, 154, 114703. [Google Scholar] [CrossRef]
- Gerland, S.; Raatz, A. Adhesive Bonding of an Aluminum Alloy with and without an Oxide Layer in Atmospheres with Different Oxygen Contents. Appl. Sci. 2022, 13, 547. [Google Scholar] [CrossRef]
- Prudnikov, A.N. Production, Structure, and Properties of Engine Pistons Made from Transeutectic Deformable Silumin. Steel Transl. 2009, 39, 391–393. [Google Scholar] [CrossRef]
- Trepczyńska-Łent, M.; Muller, K. Use of the Precipitation Hardening to Improve the Properties of Combustion Engine Pistons Made of Eutectic Silumins. Arch. Foundry Eng. 2021, 21, 77–81. [Google Scholar] [CrossRef]
- Piątkowski, J.; Wieszała, R. Influence, of modifications on fatigue of AlSi17CuMg(Fe) alloys used for pistons for internal combustion engines. Arch. Metall. Mater. 2018, 63, 135–141. [Google Scholar] [CrossRef]
- Dybiec, H.; Kozak, P. Mechanical Properties of Aluminium Wires Produced by Plastic Consolidation of Fine Grained Powders. Solid State Phenom. 2005, 101–102, 131–134. [Google Scholar] [CrossRef]
- Sugamata, M.; Kanego, J.; Fuji, H.; Kubota, M. Effect of Mg addition on the structures and mechanical properties of rapidly solidified Al-transmision metal alloys. Mater. Sci. Forum 2000, 331–337, 1157–1162. [Google Scholar] [CrossRef]
- Salleh, M.S.; Omar, M.Z.; Syarif, J. The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys. J. Alloys Compd. 2015, 621, 121–130. [Google Scholar] [CrossRef]
- Zhang, Z.; Parson, N.C.; Poole, W.J. Precipitation on grain boundaries in Al-Mg-Si alloys: The role of grain boundary misorientation. Scr. Mater. 2022, 211, 114494. [Google Scholar] [CrossRef]
- Koju, R.K.; Mishin, Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al-Mg alloys. Acta Mater. 2020, 201, 596–603. [Google Scholar] [CrossRef]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
Element | Al | Si | Fe | Cu | Mg | Mn | Other |
---|---|---|---|---|---|---|---|
AlSi5 | 94.28 | 5.23 | 0.17 | 0.03 | 0.07 | 0.02 | 0.20 |
AlSi11 | 88.26 | 11.41 | 0.16 | 0.01 | 0.02 | 0.03 | 0.13 |
AlSi20 | 79.37 | 20.21 | 0.17 | 0.02 | 0.04 | 0.03 | 0.16 |
AlSi5 | Mg-K | Al-K | Si-K | Mn-K | Fe-K | Cu-K |
---|---|---|---|---|---|---|
1 | 0.00 | 97.00 | 2.99 | 0.00 | 0.10 | 0.00 |
2 | 0.00 | 8.96 | 91.04 | 0.00 | 0.00 | 0.00 |
3 | 0.00 | 55.32 | 28.60 | 0.16 | 15.92 | 0.00 |
AlSi11 | Mg-K | Al-K | Si-K | Mn-K | Fe-K | Cu-K |
---|---|---|---|---|---|---|
1 | 0.00 | 97.89 | 2.01 | 0.00 | 0.10 | 0.00 |
2 | 0.00 | 7.86 | 92.14 | 0.00 | 0.00 | 0.00 |
3 | 0.00 | 54.32 | 29.80 | 1.16 | 14.72 | 0.00 |
AlSi20 | Mg-K | Al-K | Si-K | Mn-K | Fe-K | Cu-K |
---|---|---|---|---|---|---|
1 | 0.00 | 97.91 | 1.99 | 0.00 | 0.10 | 0.00 |
2 | 0.00 | 8.76 | 91.24 | 0.00 | 0.00 | 0.00 |
3 | 0.00 | 56.32 | 28.70 | 0.16 | 14.82 | 0.00 |
Average Grain Diameter | Standard Deviation | |
---|---|---|
AlSi5 | 5.90 | 0.73 |
AlSi5 RS | 1.38 | 0.15 |
AlSi11 | 6.16 | 0.64 |
AlSi11 RS | 1.67 | 0.22 |
AlSi20 | 9.87 | 1.37 |
AlSi20 RS | 3.78 | 0.16 |
Element | UTS, MPa | YS, MPa | Elongation, % | Hardness, HV2 | Density, g/cm3 |
---|---|---|---|---|---|
AlSi5 | 131 | 81 | 17.1 | 35 | 2.67 |
AlSi5 RS | 155 | 108 | 15.2 | 48 | 2.67 |
AlSi11 | 162 | 90 | 11.1 | 45 | 2.64 |
AlSi11 RS | 203 | 132 | 12.6 | 64 | 2.64 |
AlSi20 | 148 | 94 | 4.1 | 50 | 2.56 |
AlSi20 RS | 276 | 168 | 6.2 | 86 | 2.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noga, P.; Skrzekut, T.; Wędrychowicz, M. Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion. Materials 2023, 16, 5223. https://doi.org/10.3390/ma16155223
Noga P, Skrzekut T, Wędrychowicz M. Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion. Materials. 2023; 16(15):5223. https://doi.org/10.3390/ma16155223
Chicago/Turabian StyleNoga, Piotr, Tomasz Skrzekut, and Maciej Wędrychowicz. 2023. "Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion" Materials 16, no. 15: 5223. https://doi.org/10.3390/ma16155223
APA StyleNoga, P., Skrzekut, T., & Wędrychowicz, M. (2023). Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion. Materials, 16(15), 5223. https://doi.org/10.3390/ma16155223