Design and Synthesis of NTU-9/C3N4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of g-C3N4
2.3. Synthesis of NTU-9 MOF
2.4. g-Preparation of g-C3N4/NTU-9 Composites
2.5. Characterization
2.6. Measurement of Photocatalytic Activity in the Gas Phase
3. Results and Discussion
3.1. BET Surface Area
3.2. Light Absorption Properties
3.3. Photoluminescence Properties
3.4. XRD Analysis
3.5. XPS Analysis
3.6. Morphology
3.7. Thermal Properties
3.8. Photocatalytic Activity
3.9. Proposed Photocatalytic Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vallero, D. Air Pollutant Emissions. In Fundam; Air Pollut; Elsevier: Amsterdam, The Netherlands, 2014; pp. 787–827. [Google Scholar] [CrossRef]
- Tian, E.; Mo, J. Toward energy saving and high efficiency through an optimized use of a PET coarse filter: The development of a new electrostatically assisted air filter. Energy Build. 2019, 186, 276–283. [Google Scholar] [CrossRef]
- Othman, M.; Théron, C.; Bendahan, M.; Caillat, L.; Rivron, C.; Bernardini, S.; Le Chevallier, G.; Chevallier, E.; Som, M.-P.; Aguir, K.; et al. Efficiency of new ozone filters for NO2 sensing and air depollution. Sensors Actuators B Chem. 2018, 265, 591–599. [Google Scholar] [CrossRef]
- da Silva, D.C.; de Araújo, C.R.B.; de Oliveira Freitas, J.C.; Rodrigues, M.A.F.; de Wanderley Neto, O. Formulation of new microemulsion systems containing produced water for removal of filter cake from olefin-based drilling fluid. J. Pet. Sci. Eng. 2020, 193, 107425. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Zhou, F.; Qiu, Y.; Li, Z.; Luo, Y. A new comprehensive filtering model for pump shut-in water hammer pressure wave signals during hydraulic fracturing. J. Pet. Sci. Eng. 2022, 208, 109796. [Google Scholar] [CrossRef]
- Sharma, A.; Pathania, D.; Kumar, A. Bio-Polymer Based Tragacanth Gum (TG) Loaded Fe3O4 Nanocomposite for the Sequestration of Tenacious Congo Red Dye from Waste Water. J. Mater. Sci. Technol. Res. 2020, 7, 92–100. [Google Scholar] [CrossRef]
- Muelas-Ramos, V.; Peñas-Garzón, M.; Rodriguez, J.; Bedia, J.; Belver, C. Solar photocatalytic degradation of emerging contaminants using NH2-MIL-125 grafted by heterocycles. Sep. Purif. Technol. 2022, 297, 121442. [Google Scholar] [CrossRef]
- Hasnan, N.S.N.; Mohamed, M.A.; Anuar, N.A.; Sukur, M.F.A.; Yusoff, S.F.M.; Mokhtar, W.N.A.W.; Hir, Z.A.M.; Shohaimi, N.A.M.; Rafaie, H.A. Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. J. Ind. Eng. Chem. 2022, 113, 32–71. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Balakumar, V.; Uchida, J.; Katsurao, T.; Sakabe, H.; Ohtani, B.; Sasaki, K. Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite. Environ. Res. 2022, 212, 113635. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Naushad, M.; Veses, R.C.; Ghfar, A.A.; Stadler, F.J.; Khan, M.R. Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids. New J. Chem. 2017, 41, 10208–10224. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, J.; Qiu, B.; Zhou, Y.; Lei, J.; Xing, M.; Wang, L.; Zhou, Y.; Liu, Y.; Zhang, J. Ultrathin g-C3N4 nanosheet with hierarchical pores and desirable energy band for highly efficient H2O2 production. Appl. Catal. B Environ. 2020, 267, 118396. [Google Scholar] [CrossRef]
- Zhang, Z.; Kang, Y.; Yin, L.-C.; Niu, P.; Zhen, C.; Chen, R.; Kang, X.; Wu, F.; Liu, G. Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production. J. Mater. Sci. Technol. 2021, 95, 167–171. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, B.; Gong, G.; Li, D.; Liu, Y.; Cao, W.; Xing, L.; Zeng, J.; Shi, W.; Yuan, S. In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hydrogen Energy 2019, 44, 15882–15891. [Google Scholar] [CrossRef]
- Chen, T.; Quan, W.; Yu, L.; Hong, Y.; Song, C.; Fan, M.; Xiao, L.; Gu, W.; Shi, W. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts. J. Alloys Compd. 2016, 686, 628–634. [Google Scholar] [CrossRef]
- Chen, J.; Shen, S.; Guo, P.; Wang, M.; Wu, P.; Wang, X.; Guo, L. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl. Catal. B: Environ. 2014, 152–153, 335–341. [Google Scholar] [CrossRef]
- Tahir, M.; Tahir, B. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors. J. Mater. Sci. Technol. 2022, 106, 195–210. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, C.; Xue, S.; Liu, H.; Hao, L.; Zhu, M. Multifunctional g-C3N4/Ag NPs intercalated GO composite membrane for SERS detection and photocatalytic degradation of paraoxon-ethyl. Chem. Eng. J. 2020, 402, 126223. [Google Scholar] [CrossRef]
- Devi, S.; Kumar, S.; Devi, J.; Sharma, A.; Kumar, A. Decoration of 1,3 oxazole modified g-C3N4 by Bio-synthesized Ag nanoparticle for the photodegradation of pharmaceutical effluent: Clotrimazole. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Islam, R.; Chakraborty, A.K.; Gafur, M.A.; Rahman, A.; Rahman, H. Easy preparation of recyclable thermally stable visible-light-active graphitic-C3N4/TiO2 nanocomposite photocatalyst for efficient decomposition of hazardous organic industrial pollutants in aqueous medium. Res. Chem. Intermed. 2019, 45, 1753–1773. [Google Scholar] [CrossRef]
- Huang, W.; Liu, N.; Zhang, X.; Wu, M.; Tang, L. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Surf. Sci. 2017, 425, 107–116. [Google Scholar] [CrossRef]
- Cao, W.; Yuan, Y.; Yang, C.; Wu, S.; Cheng, J. In-Situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem. Eng. J. 2020, 391, 123608. [Google Scholar] [CrossRef]
- Devarayapalli, K.; Vattikuti, S.P.; Sreekanth, T.; Yoo, K.S.; Nagajyothi, P.; Shim, J. Hydrogen production and photocatalytic activity of g-C3N4/Co-MOF (ZIF-67) nanocomposite under visible light irradiation. Appl. Organomet. Chem. 2020, 34, e5376. [Google Scholar] [CrossRef]
- Dao, X.Y.; Xie, X.F.; Guo, J.H.; Zhang, X.Y.; Kang, Y.S.; Sun, W.Y. Boosting Photocatalytic CO2 Reduction Efficiency by Heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Appl. Energy Mater. 2020, 3, 3946–3954. [Google Scholar] [CrossRef]
- Kampouri, S.; Ireland, C.P.; Valizadeh, B.; Oveisi, E.; Schouwink, P.A.; Mensi, M.; Stylianou, K.C. Mixed-Phase MOF-Derived Titanium Dioxide for Photocatalytic Hydrogen Evolution: The Impact of the Templated Morphology. ACS Appl. Energy Mater. 2018, 1, 6541–6548. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Qiu, L.; Xu, X.; Si, Y.; Liang, T.; Liu, H.; Chu, J.; Guo, J.; Duo, S. MOF-derived TiO2 modified with g-C3N4 nanosheets for enhanced visible-light photocatalytic performance. New J. Chem. 2020, 44, 6958–6964. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhao, W.; Zou, M.; Chen, Y.; Yang, L.; Xu, L.; Wu, H.; Cao, A. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2017, 9, 37813–37822. [Google Scholar] [CrossRef]
- Zhan, Y.; Shen, L.; Xu, C.; Zhao, W.; Cao, Y.; Jiang, L. MOF-derived porous Fe2O3 with controllable shapes and improved catalytic activities in H2S selective oxidation. Crystengcomm 2018, 20, 3449–3454. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef]
- Kaur, R.; Rana, A.; Singh, R.K.; Chhabra, V.A.; Kim, K.-H.; Deep, A. Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv. 2017, 7, 29015–29024. [Google Scholar] [CrossRef] [Green Version]
- Mullangi, D.; Evans, H.A.; Yildirim, T.; Wang, Y.; Deng, Z.; Zhang, Z.; Mai, T.T.; Wei, F.; Wang, J.; Walker, A.R.H.; et al. Noncryogenic Air Separation Using Aluminum Formate Al(HCOO)3 (ALF). J. Am. Chem. Soc. 2023, 145, 9850–9856. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, Z.; Evans, H.A.; Mullangi, D.; Kang, C.; Peh, S.B.; Wang, Y.; Brown, C.M.; Wang, J.; Canepa, P.; et al. Exclusive Recognition of CO2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities. J. Am. Chem. Soc. 2023, 145, 11643–11649. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. [Google Scholar] [CrossRef]
- Zhu, B.; Xia, P.; Ho, W.; Yu, J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015, 344, 188–195. [Google Scholar] [CrossRef]
- Boonprakob, N.; Wetchakun, N.; Phanichphant, S.; Waxler, D.; Sherrell, P.; Nattestad, A.; Chen, J.; Inceesungvorn, B. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J. Colloid Interface Sci. 2014, 417, 402–409. [Google Scholar] [CrossRef]
- Miyashita, K.; Kuroda, S.-I.; Tajima, S.; Takehira, K.; Tobita, S.; Kubota, H. Photoluminescence study of electron–hole recombination dynamics in the vacuum-deposited SiO2/TiO2 multilayer film with photo-catalytic activity. Chem. Phys. Lett. 2003, 369, 225–231. [Google Scholar] [CrossRef]
- Abuilaiwi, F.A.; Awais, M.; Qazi, U.Y.; Ali, F.; Afzal, A. Al3+ doping reduces the electron/hole recombination in photoluminescent copper ferrite (CuFe2–AlO4) nanocrystallites. Boletín La Soc. Española Cerámica Y Vidr. 2022, 61, 252–262. [Google Scholar] [CrossRef]
- Aleksandrzak, M.; Kukulka, W.; Mijowska, E. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis. Appl. Surf. Sci. 2017, 398, 56–62. [Google Scholar] [CrossRef]
- Ghorui, U.K.; Satra, J.; Mondal, P.; Mardanya, S.; Sarkar, A.; Srivastava, D.N.; Adhikary, B.; Mondal, A. Graphitic carbon nitride embedded-Ag nanoparticle decorated-ZnWO4 nanocomposite-based photoluminescence sensing of Hg2+. Mater. Adv. 2021, 2, 4041–4057. [Google Scholar] [CrossRef]
- Yan, S.; Ouyang, S.; Xu, H.; Zhao, M.; Zhang, X.; Ye, J. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J. Mater. Chem. A 2016, 4, 15126–15133. [Google Scholar] [CrossRef]
- Cheng, R.; Debroye, E.; Hofkens, J.; Roeffaers, M.B.J. Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. Catalysts 2020, 10, 1352. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Luo, Q.; Dong, F.; Li, H.; Ho, W.-K. Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better. Sci. Rep. 2015, 5, 14643. [Google Scholar] [CrossRef]
- Panneri, S.; Ganguly, P.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.K.; Hareesh, U.N.S. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. Res. 2017, 24, 8609–8618. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, E.; Saravanan, S.; Aman, N. Synthesis of MIL-125/NTU-9 Heterojunction MOF for Photocatalytic Removal of Aquatic Pollutants. Russ. J. Inorg. Chem. 2022, 67, S141–S149. [Google Scholar] [CrossRef]
- Ali, M.E.M.; Assirey, E.A.; Abdel-Moniem, S.M.; Ibrahim, H.S. Low temperature-calcined TiO2 for visible light assisted decontamination of 4-nitrophenol and hexavalent chromium from wastewater. Sci. Rep. 2019, 9, 19354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Li, S.; Huang, L.; Yu, J.; Zhang, H.; Song, S.; Zeng, T. Solar-driven CO2 conversion promoted by MOF—on—MOF homophase junction. Catal. Commun. 2021, 150, 106270. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database; NIST Standard Reference Database 20 Version 4.1; NIST: Gaithersburg, MD, USA, 2012. [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Chen, S. Fabrication and high visible-light-driven photocurrent response of g-C3N4 film: The role of thiourea. Appl. Surf. Sci. 2016, 389, 1076–1083. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Z.; Li, Q.; Tang, Q.; Wu, Z. Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light. J. CO2 Util. 2016, 14, 143–151. [Google Scholar] [CrossRef]
- Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W.K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 2015, 176, 44–52. [Google Scholar] [CrossRef]
- Gao, J.; Miao, J.; Li, P.-Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun. 2014, 50, 3786–3788. [Google Scholar] [CrossRef]
- Guillot, J.; Fabreguette, F.; Imhoff, L.; Heintz, O.; de Lucas, M.M.; Sacilotti, M.; Domenichini, B.; Bourgeois, S. Amorphous TiO2 in LP-OMCVD TiNxOy thin films revealed by XPS. Appl. Surf. Sci. 2001, 177, 268–272. [Google Scholar] [CrossRef]
- Hannula, M.; Ali-Löytty, H.; Lahtonen, K.; Sarlin, E.; Saari, J.; Valden, M. Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects. Chem. Mater. 2018, 30, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905. [Google Scholar] [CrossRef]
- Dhivya, E.; Magadevan, D.; Palguna, Y.; Mishra, T.; Aman, N. Synthesis of titanium based hetero MOF photocatalyst for reduction of Cr (VI) from wastewater. J. Environ. Chem. Eng. 2019, 7, 103240. [Google Scholar] [CrossRef]
- Han, Z.; Wang, N.; Fan, H.; Ai, S. Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol. Solid State Sci. 2017, 65, 110–115. [Google Scholar] [CrossRef]
- Sánchez, N.C.; Palomino, G.T.; Cabello, C.P. TiO2 derived from NTU-9 metal-organic framework as highly efficient photocatalyst. Mater. Sci. Eng. B 2021, 273, 115424. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, J.; Xie, Y.; Chen, J.; Li, C.; Wang, J.; Luo, J.; Deng, B.; Hu, X. Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4–TiO2 hybrids. Appl. Surf. Sci. 2014, 311, 574–581. [Google Scholar] [CrossRef]
- Pareek, S.; Sharma, M.; Lal, S.; Quamara, J.K. Polymeric graphitic carbon nitride–barium titanate nanocomposites with different content ratios: A comparative investigation on dielectric and optical properties. J. Mater. Sci. Mater. Electron. 2018, 29, 13043–13051. [Google Scholar] [CrossRef]
- Liu, C.; Huang, H.; Cui, W.; Dong, F.; Zhang, Y. Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 230, 115–124. [Google Scholar] [CrossRef]
- Sakar, M.; Prakash, R.M.; Do, T.-O. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts 2019, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Chandel, M.; Thakur, M.; Sharma, A.; Pathania, D.; Kumar, A.; Singh, L. Chlorophyll sensitized (BiO)2CO3/CdWO4/rGO nano-hybrid assembly for solar assisted photo-degradation of chlorzoxazone. Chemosphere 2022, 305, 135472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, X.; Zeng, X.; Wang, M.; Shen, J.; Liu, R. Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions. Chem. Phys. Lett. 2020, 738, 100049. [Google Scholar] [CrossRef]
Sample Label | NTU-9 Content (wt%) | Coupling Method | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|
5NTU-9/C3N4_s | 5 | solvothermal | 8 | 0.03 | 12 |
10NTU-9/C3N4_s | 10 | solvothermal | 19 | 0.08 | 18 |
15NTU-9/C3N4_s | 15 | solvothermal | 14 | 0.05 | 15 |
5NTU-9/C3N4_a | 5 | calcination in air | 11 | 0.03 | 12 |
10NTU-9/C3N4_a | 10 | calcination in air | 21 | 0.07 | 13 |
15NTU-9/C3N4_a | 15 | calcination in air | 27 | 0.08 | 12 |
NTU-9 | 100 | - | 96 | 0.26 | 11 |
C3N4 | 0 | - | 14 | 0.04 | 14 |
Elemental Composition (Atomic %.) | ||||||||
---|---|---|---|---|---|---|---|---|
Sample Label | Ti | O | N | C | C/N | Ti/N | Ti/O | Ti/C |
NTU-9 | 5.44 | 35.85 | 0 | 58.71 | - | - | 0.15 | 0.09 |
C3N4 | 0 | 0.68 | 56.74 | 42.59 | 0.75 | 0 | 0 | 0 |
5NTU-9/C3N4_s | 2.38 | 16.38 | 33.44 | 47.80 | 1.43 | 0.07 | 0.15 | 0.05 |
10NTU-9/C3N4_s | 3.09 | 18.23 | 28.27 | 50.42 | 1.78 | 0.11 | 0.17 | 0.06 |
15NTU-9/C3N4_s | 5.26 | 31.44 | 9.80 | 53.50 | 5.46 | 0.54 | 0.17 | 0.10 |
5NTU-9/C3N4_a | 1.09 | 4.60 | 48.75 | 45.56 | 0.93 | 0.02 | 0.24 | 0.02 |
10NTU-9/C3N4_a | 3.41 | 9.85 | 43.10 | 43.65 | 1.01 | 0.08 | 0.35 | 0.08 |
15NTU-9/C3N4_a | 4.30 | 12.44 | 41.50 | 41.76 | 1.01 | 0.10 | 0.35 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowski, D.; Lisowski, W.; Baluk, M.A.; Klimczuk, T.; Bajorowicz, B. Design and Synthesis of NTU-9/C3N4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method. Materials 2023, 16, 5007. https://doi.org/10.3390/ma16145007
Makowski D, Lisowski W, Baluk MA, Klimczuk T, Bajorowicz B. Design and Synthesis of NTU-9/C3N4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method. Materials. 2023; 16(14):5007. https://doi.org/10.3390/ma16145007
Chicago/Turabian StyleMakowski, Damian, Wojciech Lisowski, Mateusz A. Baluk, Tomasz Klimczuk, and Beata Bajorowicz. 2023. "Design and Synthesis of NTU-9/C3N4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method" Materials 16, no. 14: 5007. https://doi.org/10.3390/ma16145007
APA StyleMakowski, D., Lisowski, W., Baluk, M. A., Klimczuk, T., & Bajorowicz, B. (2023). Design and Synthesis of NTU-9/C3N4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method. Materials, 16(14), 5007. https://doi.org/10.3390/ma16145007