Development and Promotion of Concrete Strength at Initial 24 Hours
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Concrete Mixture and Sample Preparation
2.3. Test Methods
3. Results and Discussion
3.1. Strength Development and Temperature Variation of Concrete within 1 d
3.2. Effect of Factors on Strength Development
- (1)
- Increasing content of Portland cement
- (2)
- Addition of SF
- (3)
- Addition of calcium sulfoaluminate cement (CSA)
- (4)
- Addition of early strength agent
- (5)
- Discussion
3.3. Microanalysis
- (1)
- XRD
- (2)
- SEM
3.4. Long-Term Properties
- (1)
- Effect of measures for promoting earlier strength on the long-term strength of concrete
- (2)
- Effect of measures for promoting earlier strength on chloride migration coefficient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aitcin, P. Cements of yesterday and today concrete of tomorrow. Cem. Concr. Res. 2000, 30, 1349–1359. [Google Scholar] [CrossRef]
- Damme, H. Concrete material science: Past, present, and future innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar] [CrossRef]
- Xu, D.; Cui, Y.; Li, H.; Yang, K.; Xu, W.; Chen, Y. On the future of Chinese cement industry. Cem. Concr. Res. 2015, 78, 2–13. [Google Scholar] [CrossRef]
- Juenger, M.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Wembe, J.; Ngueyep, L.; Moukete, E.; Eslammi, J.; Pliya, P.; Ndjaka, J.; Noumowe, A. Physical, mechanical properties and microstructure of concretes made with natural and crushed aggregates: Application in building construction. Clean. Mater. 2023, 7, 100173. [Google Scholar] [CrossRef]
- Cheung, J.; Roberts, L.; Liu, J. Admixtures and sustainability. Cem. Concr. Res. 2018, 114, 79–89. [Google Scholar] [CrossRef]
- Liu, J.; Yu, C.; Shu, X.; Ran, Q.; Yang, Y. Recent advance of chemical admixtures in concrete. Cem. Concr. Res. 2019, 124, 105834. [Google Scholar] [CrossRef]
- Scrivener, K.; Kirkpatrick, R. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Dushimimana, A.; Niyonsenga, A.; Nzamurambaho, F. A review on strength development of high performance concrete. Constr. Build. Mater. 2021, 307, 124865. [Google Scholar] [CrossRef]
- Nunez, I.; Marani, A.; Flah, M.; Nehdi, M. Estimating compressive strength of modern concrete mixtures using computational intelligence: A systematic review. Constr. Build. Mater. 2021, 310, 125279. [Google Scholar] [CrossRef]
- Abasi, A.; Sadhu, A.; Dunphy, K.; Banting, B. Evaluation of tensile properties of early-age concrete-block masonry assemblages. Constr. Build. Mater. 2023, 369, 130542. [Google Scholar] [CrossRef]
- Esfeh, S.; Rong, H.; Dong, W.; Zhang, B. Experimental investigation on bond behaviours of deformed steel bars embedded in early age concrete under biaxial lateral pressures at low curing temperatures. Constr. Build. Mater. 2021, 303, 124419. [Google Scholar] [CrossRef]
- Orozco, C.; Babel, S.; Tangtermsirikul, S.; Sugiyama, T. Understanding the environmental, economic, and social impact of fly ash utilization on early-age high-strength mass concrete using life cycle analysis. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Kosmatka, S.; Wilson, M. Design and Control of Concrete Mixtures; Portland Cement Association: Skokie, IL, USA, 2016; Volume 18. [Google Scholar]
- Mehta, P.; Monteiro, P. Concrete Microstructure, Properties, and Materials, 3rd ed.; The McGraw-Hill Companies: New York, NY, USA, 2006. [Google Scholar]
- Dorn, T.; Blask, O.; Stephan, D. Acceleration of cement hydration—A review of the working mechanisms, effects on setting time, and compressive strength development of accelerating admixtures. Constr. Build. Mater. 2022, 323, 126554. [Google Scholar] [CrossRef]
- Li, D.; Shen, J.; Chen, L.; Wu, X. The influence of fast-setting/early-strength agent on high phosphorous slag content cement. Cem. Concr. Res. 2001, 31, 19–24. [Google Scholar]
- Su, Y.; Wu, L.; He, X.; Zheng, Z.; Tan, H.; Yang, J.; Ma, Q.; Ding, J.; Bao, M. A novel early strength agent prepared by wet-grinding concrete waste slurry and its effect on early hydration and mechanical properties of cement based materials. Constr. Build. Mater. 2023, 362, 129673. [Google Scholar] [CrossRef]
- Zou, F.; Hu, C.; Wang, F.; Ruan, Y.; Hu, S. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder. J. Clean. Prod. 2020, 244, 118566. [Google Scholar] [CrossRef]
- Zhang, F.; Bai, Y.; Cai, Y.; Chen, B.; Ning, F. Early Hydration and Microstructure of Cement Pastes Mixed with Low-Temperature Early Strength Accelerator at 5 °C. J. Chin. Ceram. Soc. 2020, 48, 211–221. [Google Scholar]
- Zhang, J.; Ye, C.; Tan, H.; Liu, X. Potential application of Portland cement—sulfoaluminate cement system in precast concrete cured under ambient temperature. Constr. Build. Mater. 2020, 251, 118869. [Google Scholar] [CrossRef]
- Tan, H.; Li, M.; Ren, J.; Deng, X.; Zhang, X.; Nie, K.; Zhang, J.; Yu, Z. Effect of aluminum sulfate on the hydration of tricalcium silicate. Constr. Build Mater. 2019, 205, 414–424. [Google Scholar] [CrossRef]
- Pelletier, L.; Winnefeld, F.; Lothenbach, B. The ternary system Portland cement—calcium sulphoaluminate clinker—anhydrite: Hydration mechanism and mortar properties. Cem. Concr. Compos. 2010, 32, 497–507. [Google Scholar] [CrossRef]
- Pelletier-Chaignat, L.; Winnefeld, F.; Lothenbach, B.; Saout, G.; Müller, C.; Famy, C. Influence of the calcium sulphate source on the hydration mechanism of Portland cement—calcium sulphoaluminate clinke—calcium sulphate binders. Cem. Concr. Compos. 2011, 33, 551–561. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Sereewatthanawut, I. Dissolution, nucleation, and crystal growth mechanism of calcium aluminate cement. J. Sustain. Cen.-Based Mater. 2019, 8, 180–197. [Google Scholar] [CrossRef]
- Bideci, Ö.; Yılmaz, H.; Gencel, O.; Bideci, A.; Çomak, B.; Nodehi, M.; Ozbakkaloglu, T. Fiber-Reinforced lightweight calcium aluminate cement-based concrete: Effect of exposure to elevated temperatures. Sustainability 2013, 15, 4722. [Google Scholar] [CrossRef]
- Kanchanason, V.; Plank, J. Effectiveness of a calcium silicate hydrate—polycarboxylate ether (C-S-H-PCE) nanocomposite on early strength development of fly ash cement. Constr. Build. Mater. 2018, 169, 20–27. [Google Scholar] [CrossRef]
- Grrit, L.; Dietmar, S. Controlling cement hydration with nanoparticles. Cem. Concr. Compos. 2015, 57, 64–67. [Google Scholar]
- Norhasri, M.; Hamidah, M.; Fadzil, A. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Abhilash, P.; Nayak, D.; Sangoju, B.; Kumar, R.; Kumar, V. Effect of nano-silica in concrete; a review. Constr. Build. Mater. 2021, 278, 122347. [Google Scholar]
- John, E.; Matschei, T.; Stephan, D. Nucleation seeding with calcium silicate hydrate—A review. Cement Concr. Res. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration. Cement Concr. Compos. 2018, 87, 73–78. [Google Scholar] [CrossRef]
- Ouyang, X.; Koleva, D.; Ye, G.; Breugel, K. Insights into the mechanisms of nucleation and growth of C-S-H on fillers. Mater. Struct. 2017, 50, 213. [Google Scholar] [CrossRef]
- Hubler, M.; Thomas, J.; Jennings, H. Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste. Cement Concr. Res. 2011, 41, 842–846. [Google Scholar] [CrossRef]
- Jing, G.; Wu, J.; Lei, T.; Wang, S.; Strokova, V.; Nelyubova, V.; Wang, M.; Ye, Z. From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites. Constr. Build. Mater. 2020, 248, 118699. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Pannem, R. An intense review on the performance of graphene oxide and reduced graphene oxide in an admixed cement system. Constr. Build. Mater. 2020, 259, 120598. [Google Scholar] [CrossRef]
- Zhu, X.; Kang, X. Effect of graphene oxide (GO) on the hydration and dissolution of alite in a synthetic cement system. J. Mater. Sci. 2019, 55, 3419–3433. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, X.; Liu, J.; Shu, X.; Qian, J.; Huang, Y. Hydration of C3A/gypsum composites in the presence of graphene oxide. Mater. Today Commun. 2020, 23, 100889. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, S.; Gao, J.; Yang, Y. Prediction for temperature evolution and compressive strength of non-mass concrete with thermal insulation curing in cold weather. J. Build. Eng. 2020, 32, 101737. [Google Scholar] [CrossRef]
- Zeyad, A.; Tayeh, B.; Adesina, A.; Azevedo, A.; Amin, M.; Hadzima-Nyarko, M.; Agwa, I. Review on effect of steam curing on behavior of concrete. Clean. Mater. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Gallucci, E.; Zhang, X.; Scrivener, K. Effect of temperature on the microstructure of calcium silicate hydrate (CSH). Cem. Concr. Res. 2013, 53, 185–195. [Google Scholar] [CrossRef]
- Hanif, A.; Kim, Y.; Lu, Z.; Park, C. Early-age behavior of recycled aggregate concrete under steam curing regime. J. Clean. Prod. 2017, 152, 103–114. [Google Scholar] [CrossRef]
- Cassagnabère, F.; Escadeillas, G.; Mouret, M. Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete. Constr. Build. Mater. 2009, 23, 775–784. [Google Scholar] [CrossRef]
- Liao, X.; Yan, Q.; Zhang, H.; Zhang, Y.; Zhang, C. Integrating PZT-enabled active sensing with deep learning techniques for automatic monitoring and assessment of early-age concrete strength. Measurement 2023, 211, 112657. [Google Scholar] [CrossRef]
- Gagg, C. Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng. Fail. Anal. 2014, 40, 114–140. [Google Scholar] [CrossRef]
- Tang, Z.; Lim, Y.; Smith, S.; Mostafa, A.; Lam, A.; Soh, C. Monitoring the curing process of in-situ concrete with piezoelectric-based techniques—A practical application. Struct. Health Monit. 2023, 22, 518–539. [Google Scholar] [CrossRef]
- Wang, F.; Kong, X.; Wang, D.; Wang, Q. The effects of nano-C-S-H with different polymer stabilizers on early cement hydration. J. Am. Ceram. Soc. 2019, 102, 5103–5116. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Standards Press of China: Beijing, China, 2019.
- GB/T 50082-2009; Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete. Standards Press of China: Beijing, China, 2009.
- Taylor, H. Cement Chemistry, 2nd ed.; Thomas Telford: Telford, UK, 1997; p. 212. [Google Scholar]
- Yan, P.; Zhang, B. Mechanical properties of high strength concrete prepared with different densities of silica fume. J. Chin. Ceram. Soc. 2016, 44, 196–201. [Google Scholar]
- Li, M.; Lan, M.; Chen, Z.; Wang, J.; Cui, S.; Wang, Y. Research on the hydration properties of C4A3-CH2 cement system at different temperatures. Materials 2020, 13, 4000. [Google Scholar]
- Zou, D.; Wnag, K.; Li, H.; Guan, X. Effect of LiAl-layered double hydroxides on hydration of calcium sulfoaluminate cement at low temperature. Constr. Build. Mater. 2019, 223, 910–917. [Google Scholar] [CrossRef]
- Trauchessec, R.; Mechling, J.; Lecomte, A.; Roux, A.; Rolland, B. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cem. Concr. Compos. 2015, 56, 106–114. [Google Scholar] [CrossRef]
- Pe´ra, J.; Ambroise, J. New applications of calcium sulfoaluminate cement. Cem. Concr. Res. 2004, 34, 671–676. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Pansuk, W.; Pheinsusom, P.; Prasittisopin, L. Chloride-induced corrosion of a galvanized steel-embedded calcium sulfoaluminate stucco system. J. Build. Eng. 2021, 44, 103376. [Google Scholar] [CrossRef]
- Bentz, D.; Barrett, T.; Varga, I.; Weiss, J. Relating compressive strength to heat release in mortars. Adv. Civ. Eng. Mater. 2012, 1, 14. [Google Scholar] [CrossRef]














| Sample | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | Others |
|---|---|---|---|---|---|---|---|
| OPC | 54.79 | 26.16 | 6.93 | 3.36 | 2.92 | 2.91 | 2.93 |
| SF | 0.13 | 97.87 | 0.06 | 0.08 | 0.61 | 0.66 | 0.59 |
| CSA | 51.17 | 7.63 | 21.76 | 1.93 | 14.72 | 1.61 | 1.18 |
| OPC | Sand | Fine Gravel | Coarse Gravel | Water | PCA |
|---|---|---|---|---|---|
| 426 | 734 | 459 | 689 | 128 | 2.56 |
| OPC | Sand | Fine Gravel | Coarse Gravel | Water | PCA |
|---|---|---|---|---|---|
| 420 | 739 | 462 | 693 | 126 | 2.52 |
| 440 | 729 | 456 | 684 | 132 | 2.64 |
| 460 | 718 | 449 | 674 | 138 | 2.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Qian, J.; Sun, H.; Fan, Y. Development and Promotion of Concrete Strength at Initial 24 Hours. Materials 2023, 16, 4452. https://doi.org/10.3390/ma16124452
Fan C, Qian J, Sun H, Fan Y. Development and Promotion of Concrete Strength at Initial 24 Hours. Materials. 2023; 16(12):4452. https://doi.org/10.3390/ma16124452
Chicago/Turabian StyleFan, Chuanhe, Jueshi Qian, Huaqiang Sun, and Yingru Fan. 2023. "Development and Promotion of Concrete Strength at Initial 24 Hours" Materials 16, no. 12: 4452. https://doi.org/10.3390/ma16124452
APA StyleFan, C., Qian, J., Sun, H., & Fan, Y. (2023). Development and Promotion of Concrete Strength at Initial 24 Hours. Materials, 16(12), 4452. https://doi.org/10.3390/ma16124452
