Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres
Abstract
1. Introduction
2. Experimental Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nee, H.-P.; Kolar, J.; Friedrichs, P.; Rabkowski, J. Editorial: Special issue on wide bandgap power devices and their applications. IEEE Trans. Power Electron. 2014, 29, 2153–2154. [Google Scholar] [CrossRef]
- Gong, X.; Ferreira, J. Investigation of conducted EMI in SiC JFET inverters using separated heat sinks. IEEE Trans. Ind. Electron. 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Alexandru, M.; Banu, V.; Jordà, X.; Montserrat, J.; Vellvehi, M.; Tournier, D.; Millán, J.; Godignon, P. SiC integrated circuit control electronics for high temperature operation. IEEE Trans. Ind. Electron. 2015, 62, 3182–3191. [Google Scholar] [CrossRef]
- Esteve, V.; Jordán, J.; Sanchis-Kilders, E.; Dede, E.J.; Maset, E.; Ejea, J.B.; Ferreres, A. Comparative study of a single inverter bridge for dual frequency induction heating using Si and SiC MOSFETs. IEEE Trans. Ind. Electron. 2015, 62, 1440–1450. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, Y.; Boroyevich, D.; Ngo, K.; Mattavelli, P.; Rajashekara, K. A 1200 V, 60 A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications. IEEE Trans. Power Electron. 2014, 29, 2307–2320. [Google Scholar] [CrossRef]
- Ning, P.; Zhang, D.; Lai, R.; Jiang, D.; Wang, F.; Boroyevich, D.; Burgos, R.; Karimi, K.; Immanuel, V.D. High-temperature hardware: Development of a 10-kW high-temperature, high-power-density three-phase AC-DC-AC SiC converter. IEEE Ind. Electron. Mag. 2013, 7, 6–17. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W. Experimental comparison of isolated bidirectional DC/DC converters based on All-Si and All-SiC power devices for next-generation power conversion application. IEEE Trans. Ind. Electron. 2014, 61, 1389–1393. [Google Scholar] [CrossRef]
- Zhang, H.; Tolbert, L.M. Efficiency impact of silicon carbide power electronics for modern wind turbine full scale frequency converter. IEEE Trans. Ind. Electron. 2011, 58, 21–28. [Google Scholar] [CrossRef]
- Cabello, M.; Soler, V.; Gemma, R.; Montserrat, J.; Rebollo, J.; Godignon, P. Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review. Mater. Sci. Semicond. Process. 2018, 78, 22–31. [Google Scholar] [CrossRef]
- Li, X.; Ermakov, A.; Amarasinghe, V.; Garfunkel, E.; Gustafsson, T.; Feldman, L.C. Oxidation induced stress in SiO2/SiC structures. Appl. Phys. Lett. 2017, 110, 141604. [Google Scholar] [CrossRef]
- Pérez-Tomás, A.; Godignon, P.; Mestres, N.; Millán, J. A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface. J. Microelectron. Eng. 2006, 83, 440–445. [Google Scholar] [CrossRef]
- Palmieri, R.; Radtke, C.; Silva, M.R., Jr. Trapping of majority carriers in SiO2/4H-SiC structures. J. Phys. D Appl. Phys. 2009, 42, 125301. [Google Scholar] [CrossRef]
- Pascu, R.; Romanitan, C.; Varesteanu, P.; Kusko, M. A Reliable Technology for Advanced SiC-MOS Devices Based on Fabrication of High Quality Silicon Oxide Layers by Converting a-Si. J. Electron. Devices Soc. 2019, 7, 158–167. [Google Scholar] [CrossRef]
- Kaminski, P.; Budzioch, R.; Gaca, J.; Michałowski, P.P.; Kozłowski, R.; Harmasz, A.; Ciuk, T.; Płocharski, J. Effect of oxidation temperature on the heterogeneity of chemical composition and density in SiO2 film grown on 4H-SiC. J. Mater. Chem. C 2021, 9, 4393. [Google Scholar] [CrossRef]
- Saito, M.; Li, H.; Inoue, K.; Matsuhata, H.; Ikuharaet, Y. Oxygen atom ordering on SiO2/4H-SiC(0001) polar interfaces formed by wet oxidation. Acta Mater. 2021, 221, 117360. [Google Scholar] [CrossRef]
- Kobayashi, T.; Matsushita, Y. Structure and energetics of carbon defects in SiC (0001)/SiO2 systems at realistic temperatures: Defects in SiC, SiO2, and at their interface. J. Appl. Phys. 2019, 126, 145302. [Google Scholar] [CrossRef]
- Matsushita, Y.; Oshiyama, A. Structural stability and energy levels of carbon-related defects in amorphous SiO2 and its interface with SiC. Jpn. J. Appl. Phys. 2018, 57, 125701. [Google Scholar] [CrossRef]
- Ólafsson, H.Ö.; Allerstam, F.; Sveinbjörnsson, E.Ö. On Shallow Interface States in n-Type 4H-SiC Metal-Oxide-Semiconductor Structures. Mater. Sci. Forum 2001, 389–393, 1005–1008. [Google Scholar] [CrossRef]
- Chanthaphan, A.; Hosoi, T.; Shimura, T.; Watanabe, H. Study of SiO2/4H-SiC interface nitridation by post-oxidation annealing in pure nitrogen gas. AIP Adv. 2015, 5, 097134. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Y.; Shen, H.; Li, C.; Wu, J.; Bai, Y.; Liu, K.; Liu, X. Effects of combined NO and forming gas annealing on interfacial properties and oxide reliability of 4H-SiC MOS structures. Microelectron. Reliab. 2016, 58, 192–196. [Google Scholar] [CrossRef]
- Krol, K.; Kalisz, M.; Sochacki, M.; Szmidt, J. The influence of post-oxidation annealing process in O2 and N2O on the quality of Al/SiO2/n-type 4H-SiC MOS interface. Mater. Sci. Forum 2013, 740–742, 753–756. [Google Scholar] [CrossRef]
- Fujihira, K.; Tarui, Y.; Imaizumi, M.; Ohtsuka, K.; Takami, T.; Shiramizu, T.; Kawase, K.; Tanimura, J.; Ozeki, T. Characteristics of 4H–SiC MOS interface annealed in N2O. Solid-State Electron. 2005, 49, 896–901. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yamamoto, K.; Hitchcock, C.W.; Chow, T.P. Characteristics of MOS capacitors with NO and POCl3 annealed gate oxides on (0001), (11-20) and (000-1) 4H-SiC. Mater. Sci. Forum 2015, 821–823, 500–503. [Google Scholar] [CrossRef]
- Tsui, B.-Y.; Huang, Y.-T.; Wu, T.-L.; Chien, C.-H. Time-dependent dielectric breakdown of gate oxide on 4H-SiC with different oxidation processes. Microelectron. Reliab. 2021, 123, 114186. [Google Scholar] [CrossRef]
- Fiorenza, P.; Giannazzo, F.; Vivona, M.; La Magna, A.; Roccaforte, F. SiO2/4H-SiC interface doping during post-deposition-annealing of the oxide in N2O or POCl3. Appl. Phys. Lett. 2013, 103, 153508. [Google Scholar] [CrossRef]
- Okamoto, D.; Yano, H.; Hatayama, T.; Fuyuki, T. Development of 4H-SiC MOSFETs with Phosphorus-Doped Gate Oxide. Mater. Sci. Forum 2012, 717–720, 733–738. [Google Scholar] [CrossRef]
- Krol, K.B.; Sochacki, M.; Strupiński, W.; Racka, K.; Guziewicz, M.; Konarski, P.; Miśnik, M.; Szmidt, J. Chlorine-enhanced thermal oxides growth and significant trap density reduction at SiO2/SiC interface by incorporation of phosphorus. Thin Solid Films 2015, 591, 86–89. [Google Scholar] [CrossRef]
- Fiorenza, P.; Swanson, L.K.; Vivona, M.; Giannazzo, F.; Bongiorno, C.; Frazzetto, A.; Roccaforte, F. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3. Appl. Phys. A 2014, 115, 333–339. [Google Scholar] [CrossRef]
- Yano, H.; Araoka, T.; Hatayama, T.; Fuyuki, T. Improved stability of 4H-SiC MOS device properties by combination of NO and POCl3 annealing. Mater. Sci. Forum 2013, 740–742, 727–732. [Google Scholar] [CrossRef]
- Yano, H.; Kanafuji, N.; Osawa, A.; Hatayama, T.; Fuyuki, T. Threshold Voltage Instability in 4H-SiC MOSFETs with Phosphorus-Doped and Nitrided Gate Oxides. IEEE Trans. Electron. Devices 2015, 62, 324–332. [Google Scholar] [CrossRef]
- Fiorenza, P.; Giannazzo, F.; Roccaforte, F. Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review. Energies 2019, 12, 2310. [Google Scholar] [CrossRef]
- Tachiki, K.; Kaneko, M.; Kobayashi, T.; Kimoto, T. Formation of high-quality SiC(0001)/SiO2 structures by excluding oxidation process with H2 etching before SiO2 deposition and high temperature N2 annealing. Appl. Phys. Express 2020, 13, 121002. [Google Scholar] [CrossRef]
- Taube, A.; Guziewicz, M.; Kosiel, K.; Gołaszewska-Malec, K.; Król, K.; Kruszka, R.; Kaminska, E.; Piotrowska, A. Characterization of Al2O3/4H-SiC and Al2O3/SiO2/4H-SiC MOS structures. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 447–451. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Baek, R.-H.; Chang, S.K.; Choi, K.K. Effect of hydrogen plasma treatment on the electrical properties for SiC-based power MOSFETs. Microelectron. Eng. 2022, 258, 111769. [Google Scholar] [CrossRef]
- Kobayashi, T.; Suda, J.; Kimoto, T. Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature. AIP Adv. 2017, 7, 045008. [Google Scholar] [CrossRef]
- Yano, H.; Katafuchi, F.; Kimoto, T.; Matsunam, H. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET’s. IEEE Trans. Electron. Devices 1999, 46, 504–510. [Google Scholar] [CrossRef]
- Godignon, P.; Montserrat, J.; Rebollo, J.; Planson, D. Edge Terminations for 4H-SiC Power Devices: A Critical Issue. Mater. Sci. Forum 2022, 1062, 570–575. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Willey and Sons: New York, NY, USA, 1982. [Google Scholar]
- Afanas’ev, V.V.; Stesmans, A.; Bassler, M.; Pensl, G.; Schulz, M.J. Shallow electron traps at the 4H-SiC/SiO2 interface. Appl. Phys. Lett. 2000, 76, 336–338. [Google Scholar] [CrossRef]
- Shroder, D. Oxide and interface trapped charges, oxide thickness. In Semiconductor Material and Device Characterization; John Wiley & Sons, Inc.: New York, NY, USA, 2006; pp. 319–387. [Google Scholar]
- Sze, S.M.; Kwok, K.N. Physics of Semiconductor Devices; Wiley Interscience, John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Afanas’ev, V.V.; Bassler, M.; Pensl, G.; Schulz, M.J. Intrinsic SiC/SiO2 Interface States. Phys. Status Solidi A 1997, 162, 321–337. [Google Scholar] [CrossRef]
- Okamoto, M.; Tanaka, M.; Yatsuo, T.; Fukuda, K. Effect of the oxidation process on the electrical characteristics of 4H-SiC p-channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 2006, 89, 023502. [Google Scholar] [CrossRef]
- Hosoi, T.; Nagai, D.; Shimura, T.; Watanabe, H. Exact evaluation of interface reaction-limited growth in dry and wet thermal oxidation of 4HSiC (0001) Si-face surfaces. Jpn. J. Appl. Phys. 2015, 54, 098002. [Google Scholar] [CrossRef]
- Indari, E.D.; Yamashita, Y.; Hasunuma, R.; Oji, H.; Yamabe, K. Relationship between electrical properties and interface structures of SiO2/4H-SiC prepared by dry and wet oxidation. AIP Adv. 2019, 9, 105018. [Google Scholar] [CrossRef]
- Fukuda, K.; Kato, M.; Kojima, K.; Senzaki, J. Effect of gate oxidation method on electrical properties of metal-oxide-semiconductor field-effect transistors fabricated on 4H-SiC C(000-1) face. Appl. Phys. Lett. 2004, 84, 2088–2090. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.S.; Li, M.; Ermakov, A.; Medina-Ramos, J.; Fister, T.T.; Amarasinghe, V.; Gustafsson, T.; Garfunkel, E.; Fenter, P.; et al. Effect of nitrogen passivation on interface composition and physical stress in SiO2/SiC(4H) structures. Appl. Phys. Lett. 2018, 113, 131601. [Google Scholar] [CrossRef]
- Wang, T.; Liu, G.; Li, Y.; Hou, H.; Xu, Z.; Wang, M.; Qiao, G. Native point defects on hydrogen-passivated 4H–SiC(0001) surface and the effects on metal adsorptions. J. Chem. Phys. 2017, 147, 024707. [Google Scholar] [CrossRef]
- Kil, T.-H.; Kita, K. Anomalous band alignment change of SiO2/4H–SiC (0001) and (000-1) MOS capacitors induced by NO-POA and its possible origin. Appl. Phys. Lett. 2020, 116, 122103. [Google Scholar] [CrossRef]
- Okamoto, D.; Yano, H.; Hirata, K.; Hatayama, T.; Fuyuki, T. Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide. IEEE Electron. Device Lett. 2010, 31, 710–712. [Google Scholar] [CrossRef]
- Pascu, R.; Craciunoiu, F.; Kusko, M.; Mihaila, M.; Pristavu, G.; Badila, M.; Brezeanu, G. SiO2/4H-SiC interface states reduction by POCl3 post-oxidation annealing. In Proceedings of the 2015 International Semiconductor Conference (CAS), Sinaia, Romania, 12–14 October 2015; pp. 255–258. [Google Scholar] [CrossRef]
- Yano, H.; Hatayama, T.; Fuyuki, T. POCl3 Annealing as a New Method for Improving 4H-SiC MOS Device Performance. ECS Trans. 2013, 50, 257. [Google Scholar] [CrossRef]
- Sharma, Y.K.; Ahyi, A.C.; Isaacs-Smith, T.; Modic, A.; Park, M.; Xu, Y.; Garfunkel, E.L.; Dhar, S.; Feldman, L.C.; Williams, J.R. High-mobility stable 4H-SiC MOSFETs using a thin PSG interfacial passivation layer. IEEE Electron. Device Lett. 2013, 34, 175–177. [Google Scholar] [CrossRef]
- Jayawardena, A.; Shen, X.; Mooney, P.M.; Dhar, S. Mechanism of phosphorus passivation of near-interface oxide traps in 4H–SiC MOS devices investigated by CCDLTS and DFT calculation. Semicond. Sci. Technol. 2018, 33, 065005. [Google Scholar] [CrossRef]
- Jiao, C.; Ahyi, A.C.; Xu, C.; Morisette, D.; Feldman, L.C.; Dhar, S. Phospho-silicate glass gated 4H-SiC metal-oxide-semiconductor devices: Phosphorus concentration dependence. J. Appl. Phys. 2016, 119, 155705. [Google Scholar] [CrossRef]
- Ju, Y.; Bouvet, D.; Stark, R.; Woerle, J.; Grossner, U. 4H-SiC Power VDMOSFET Manufacturing Utilizing POCl3 Post Oxidation Annealing. Mater. Sci. Forum 2020, 1004, 559–564. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Liu, G.; Lee, H.D.; Shubeita, S.M.; Jiao, C.; Modic, A.; Ahyi, A.C.; Sharma, Y.; Wan, A.; et al. Concentration, chemical bonding, and etching behavior of P and N at the SiO2/SiC(0001) interface. J. Appl. Phys. 2018, 118, 235303. [Google Scholar] [CrossRef]
- Kobayashi, T.; Matsushita, Y.; Okuda, T.; Oshiyama, A. Microscopic mechanism of carbon annihilation upon SiC oxidation due to phosphorus treatment: Density functional calculations combined with ion mass spectrometry. Appl. Phys. Express 2018, 11, 121301. [Google Scholar] [CrossRef]
- Kimoto, T.; Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Appl. Phys. Express 2018, 13, 120101. [Google Scholar] [CrossRef]
- Devynck, F.; Alkauskas, A.; Broqvist, P.; Pasquarello, A. Defect levels of carbon-related defects at the SiC/SiO2 interface from hybrid functionals. Phys. Rev. B 2011, 83, 195319. [Google Scholar] [CrossRef]
- Kaneko, T.; Tajima, N.; Yamasaki, T.; Nara, J.; Schimizu, T.; Kato, K.; Ohno, T. Hybrid density functional analysis of distribution of carbon-related defect levels at 4H-SiC(0001)/SiO2 interface. Appl. Phys. Express 2018, 11, 011302. [Google Scholar] [CrossRef]
- Gavrikov, A.; Knizhnik, A.; Safonov, A.; Schebinin, A.; Bagatu’yants, A.; Potapkin, B.; Chatterjee, A.; Matocha, K. First-principles-based investigation of kinetic mechanism of SiC(0001) dry oxidation including defect generation and passivation. J. Appl. Phys. 2008, 104, 093508. [Google Scholar] [CrossRef]
- Deak, P.; Knaup, J.M.; Hornos, T.; Thill, C.; Gali, A.; Frauenheim, T. The mechanism of defect creation and passivation at the SiC/SiO2 interface. J. Phys. D Appl. Phys. 2007, 40, 6242–6253. [Google Scholar] [CrossRef]
- Salemi, S.; Goldsman, N.; Akturk, A.; Lelis, A. Density Functional Theory Based Investigation of Defects and Passivation of 4H-Silicon Carbide/SiO2 Interface. In Proceedings of the International Conference on Simulation of Semiconductor Process and Devices, SISPAD 2012, Denver, CO, US, 5–7 September 2012. [Google Scholar]
- Pennington, G.; Ashman, C. Nitrogen Passivation of (0001) 4H-SiC Dangling Bonds. Mater. Sci. Forum 2009, 600–603, 469–472. [Google Scholar] [CrossRef]
- Salemi, S.; Goldsman, N.; Ettisserry, D.P.; Akturk, A.; Lelis, A. The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface. J. Appl. Phys. 2013, 113, 053703. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Shao, C.; Robertson, J.; Liu, S.; Guo, Y. Defects and Passivation Mechanism of the Suboxide Layers at SiO₂/4H-SiC (0001) Interface: A First-Principles Calculation. IEEE Trans. Electron. Devices 2020, 68, 288–293. [Google Scholar] [CrossRef]
- Nakanuma, T.; Iwakata, Y.; Watanabe, A.; Hosoi, T.; Kobayashi, T.; Sometani, M.; Okamoto, M.; Yoshigoe, A.; Shimura, T.; Watanabe, H. Comprehensive physical and electrical characterizations of NO nitrided SiO2/4H-SiC(110) interfaces. Jpn. J. Appl. Phys. 2022, 61, SC1065. [Google Scholar] [CrossRef]
- Zheng, Z.; Tressler, R.E.; Spear, K.E. The effects of Cl2 on the oxidation of single crystal silicon carbide. Corros. Sci. 1992, 33, 557–567. [Google Scholar] [CrossRef]
- Pascu, R.; Craciunoiu, F.; Pristavu, G.; Brezeanu, G.; Kusko, M. Oxide trap states versus gas sensing in SiC-MOS capacitors—The effect of N- and P- based post oxidation processes. Sens. Actuators B 2017, 245, 911–922. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Robertson, J. Mobility degradation in 4H-SiC MOSFETs and interfacial formation of carbon clusters. Solid-State Electron. 2021, 183, 108051. [Google Scholar] [CrossRef]
Process Type, Parameter | Values | ||||||
---|---|---|---|---|---|---|---|
Oxidation, Time t (min) | Dry | Dry | Dry | Wet | Wet | Wet | Wet |
360 | 180 | 360 | 80 | 80 | 80 | 80 | |
POCl3 T (°C) | - | - | 1000 | - | 1000 | 1000 | 1000 |
N2 T (°C) | 1000 | - | 1000 | - | 1000 | 1000 | 1000 |
NO T (°C) | - | 1000 | - | 1000 | 1000 | 1100 | 1175 |
sample identification, ID | d-N2 | d-NO | d-POC | w-NO | w-POC-NO-1 | w-POC-NO-2 | w-POC-NO-3 |
Parameter | Sample Identification, ID | ||||||
---|---|---|---|---|---|---|---|
d-N2 | d-NO | d-POC | w-NO | w-POC-NO-1 | w-POC-NO-2 | w-POC-NO-3 | |
tox (nm) | 80 | 50 | 78 | 53 | 58 | 73 | 73 |
Dit × 1011 (eV−1cm−2) (EC − ET = 0.2 eV) | 48 | 7.6 | 5.4 | 22 | 4.5 | 3.1 | 2.0 |
VFB (V) | 2.37 | 3.97 | −1.15 | 3.52 | 2.47 | 3.32 | 3.82 |
Qeff × 1011 (cm−2) | −3.2 | −12 | 6.3 | −10 | −5.4 | −6.5 | −7.9 |
Before NO | Temperature | After NO | ||
---|---|---|---|---|
tox (nm) | TNO (°C) | tox (nm) | η (λ = 650 nm) | Δtox (nm) |
75 | 1000 | 66.4 | 1.472 | −8.6 |
75 | 1100 | 62.1 | 1.487 | −12.7 |
86 | 1175 | 72.6 | 1.488 | −13.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzozowski, E.; Kaminski, M.; Taube, A.; Sadowski, O.; Krol, K.; Guziewicz, M. Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres. Materials 2023, 16, 4381. https://doi.org/10.3390/ma16124381
Brzozowski E, Kaminski M, Taube A, Sadowski O, Krol K, Guziewicz M. Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres. Materials. 2023; 16(12):4381. https://doi.org/10.3390/ma16124381
Chicago/Turabian StyleBrzozowski, Ernest, Maciej Kaminski, Andrzej Taube, Oskar Sadowski, Krystian Krol, and Marek Guziewicz. 2023. "Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres" Materials 16, no. 12: 4381. https://doi.org/10.3390/ma16124381
APA StyleBrzozowski, E., Kaminski, M., Taube, A., Sadowski, O., Krol, K., & Guziewicz, M. (2023). Carrier Trap Density Reduction at SiO2/4H-Silicon Carbide Interface with Annealing Processes in Phosphoryl Chloride and Nitride Oxide Atmospheres. Materials, 16(12), 4381. https://doi.org/10.3390/ma16124381