Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Conductive Textiles
2.3. Morphological and Structural Analysis
2.4. Thermoelectric Analysis
3. Results and Discussion
3.1. Morphological Analysis of As-Received CNFs and Dip-Coated Textiles
3.2. Raman Analysis of As-Received CNFs and Dip-Coated Textiles
3.3. XPS Analysis of As-Received CNFs and Dip-Coated Textiles
3.4. Thermoelectric Properties of As-Received CNFs and Dip-Coated Textiles at 30 °C
3.4.1. Electrical Conductivity
3.4.2. Seebeck Coefficient
3.4.3. Power Factor and Figure of Merit
3.5. Thermoelectric Properties of As-Received CNFs and Dip-Coated Textiles from 30 °C to 100 °C
3.5.1. Electrical Conductivity
3.5.2. Seebeck Coefficient
3.6. Electrical Conductivity σ (T) and Seebeck Coefficient S (T) Modeling of As-Received CNFs and Dip-Coated Textiles from 30 °C to 100 °C
3.6.1. Electrical Conductivity σ (T) Modeling
3.6.2. Seebeck Coefficient S (T) Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tseghai, G.B.; Malengier, B.; Fante, K.A.; Nigusse, A.B.; Van Langenhove, L. Integration of Conductive Materials with Textile Structures, an Overview. Sensors 2020, 20, 6910. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.; Wu, Y.; Fenech-Salerno, B.; Torrisi, F.; Carmichael, T.B.; Müller, C. Conducting materials as building blocks for electronic textiles. MRS Bull. 2021, 46, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Buga, C.S.; Viana, J.C. A Review on Materials and Technologies for Organic Large-Area Electronics. Adv. Mater. Technol. 2021, 6, 2001016. [Google Scholar] [CrossRef]
- Khair, N.; Islam, R.; Shahariar, H. Carbon-based electronic textiles: Materials, fabrication processes and applications. J. Mater. Sci. 2019, 54, 10079–10101. [Google Scholar] [CrossRef]
- Shao, W.; Cui, T.; Li, D.; Jian, J.; Li, Z.; Ji, S.; Cheng, A.; Li, X.; Liu, K.; Liu, H.; et al. Carbon-Based Textile Sensors for Physiological-Signal Monitoring. Materials 2023, 16, 3932. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, R.; Qian, J. Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Adv. 2019, 9, 29154–29172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, R.; Khair, N.; Ahmed, D.M.; Shahariar, H. Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Mater. Today Commun. 2019, 19, 32–38. [Google Scholar] [CrossRef]
- Islam, M.R.; Afroj, S.; Novoselov, K.S.; Karim, N. Smart Electronic Textile-Based Wearable Supercapacitors. Adv. Sci. 2022, 9, 2203856. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K.; Ghosh, T.K. Thermoelectric Materials for Textile Applications. Molecules 2021, 26, 3154. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart Textiles for Electricity Generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef] [PubMed]
- Zevalkink, A.; Smiadak, D.M.; Blackburn, J.L.; Ferguson, A.J.; Chabinyc, M.L.; Delaire, O.; Wang, J.; Kovnir, K.; Martin, J.; Schelhas, L.T.; et al. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev. 2018, 5, 021303. [Google Scholar] [CrossRef]
- Rowe, D.M. CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Paleo, A.J.; Vieira, E.M.F.; Wan, K.; Bondarchuk, O.; Cerqueira, M.F.; Bilotti, E.; Melle-Franco, M.; Rocha, A.M. Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power. Cellulose 2020, 27, 9091–9104. [Google Scholar] [CrossRef]
- Paleo, A.J.; Krause, B.; Cerqueira, M.F.; Muñoz, E.; Pötschke, P.; Rocha, A.M. Electronic Features of Cotton Fabric e-Textiles Prepared with Aqueous Carbon Nanofiber Inks. ACS Appl. Eng. Mater. 2022, 1, 122–131. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1968, 1, 1–17. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, D.S.; Czerw, R.; Chiu, P.W.; Grobert, N.; Terrones, M.; Reyes-Reyes, M.; Terrones, H.; Charlier, J.C.; Ajayan, P.M.; et al. Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States. Nano Lett. 2003, 3, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Pyrograf Products Inc. Available online: https://apsci.com/products/pyrograf/ (accessed on 31 May 2023).
- Guadagno, L.; Raimondo, M.; Vittoria, V.; Vertuccio, L.; Lafdi, K.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 2013, 24, 305704. [Google Scholar] [CrossRef]
- Jenschke, W.; Ullrich, M.; Krause, B.; Pötschke, P. Messanlage zur Untersuchung des Seebeck-Effektes in Polymermaterialien Measuring apparatus for study of Seebeck effect in polymer materials. Tech. Mess. 2020, 87, 495–503. [Google Scholar] [CrossRef]
- Gnanaseelan, M.; Chen, Y.; Luo, J.; Krause, B.; Pionteck, J.; Pötschke, P.; Qi, H. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Compos. Sci. Technol. 2018, 163, 133–140. [Google Scholar] [CrossRef]
- Krause, B.; Barbier, C.; Levente, J.; Klaus, M.; Pötschke, P. Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties. J. Compos. Sci. 2019, 3, 106. [Google Scholar] [CrossRef] [Green Version]
- Mahanta, N.K.; Abramson, A.R.; Lake, M.L.; Burton, D.J.; Chang, J.C.; Mayer, H.K.; Ravine, J.L. Thermal conductivity of carbon nanofiber mats. Carbon 2010, 48, 4457–4465. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem. Mater. 1990, 2, 557–563. [Google Scholar] [CrossRef]
- Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, M.; Kim, Y.A.; Takeda, T.; Hong, S.H.; Matusita, T.; Hayashi, T.; Dresselhaus, M.S. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon 2001, 39, 2003–2010. [Google Scholar] [CrossRef]
- Knight, D.S.; White, W.B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 1989, 4, 385–393. [Google Scholar] [CrossRef]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.L.; Pereira, M.F.R. The role of surface chemistry in catalysis with carbons. Catal. Today 2010, 150, 2–7. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47, 2–22. [Google Scholar] [CrossRef]
- Paleo, A.J.; Krause, B.; Mendes, A.R.; Tavares, C.J.; Cerqueira, M.F.; Muñoz, E.; Pötschke, P. Comparative Thermoelectric Properties of Polypropylene Composites Melt-Processed Using Pyrograf III Carbon Nanofibers. J. Compos. Sci. 2023, 7, 173. [Google Scholar] [CrossRef]
- Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804. [Google Scholar]
- Yonezawa, S.; Amma, Y.; Miura, K.; Chiba, T.; Takashiri, M. Air stability of n-type single-walled carbon nanotube films with anionic surfactants investigated using molecular dynamics. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126925. [Google Scholar] [CrossRef]
- Ambegaokar, V.; Halperin, B.I.; Langer, J.S. Hopping Conductivity in Disordered Systems. Phys. Rev. B 1971, 4, 2612–2620. [Google Scholar] [CrossRef]
- Mahan, G.D. Impurity resonances in carbon nanotubes. Phys. Rev. B 2004, 69, 125407. [Google Scholar] [CrossRef]
Sample | wG (cm−1) | FWHMG (cm−1) | wD (cm−1) | FWHMD (cm−1) | ID/IG | La (nm) |
---|---|---|---|---|---|---|
CNFs | 1587 | 100 | 1353 | 140 | 1 | 4.4 |
CWF@1.6 CNF | 1582 | 100 | 1350 | 130 | 0.81 | 5.4 |
CWF@3.2 CNF | 1587 | 100 | 1352 | 160 | 0.89 | 5 |
CWF@6.4 CNF | 1586 | 90 | 1352 | 140 | 0.8 | 5.5 |
Sample | σ (S m−1) | S (µV K−1) | P F (μW m−1 K−2) | zT |
---|---|---|---|---|
CWF@1.6CNF | 5.14 ± 0.29 | −1.11 ± 0.07 | 6.33 × 10−6 | 4.45 × 10−9 |
CWF@3.2CNF | 10.64 ± 0.43 | −1.10 ± 0.03 | 1.29 × 10−5 | 9.0 × 10−9 |
CWF@6.4CNF | 23.19 ± 0.68 | −1.10 ± 0.03 | 2.81 × 10−5 | 1.96 × 10−8 |
CNF powder | 136.09 ± 12 | −0.60 ± 0.03 | 4.92 × 10−5 | 3.47 × 10−8 |
Sample | σ0 (S m−1) | TC (K) | WD (eV) |
---|---|---|---|
CWF@1.6 CNF | 33.4 | 3.8 × 103 | 3.3 × 10−1 |
CWF@3.2 CNF | 175.4 | 1.9 × 104 | 1.6 |
CWF@6.4 CNF | 2694.5 | 1.5 × 105 | 13.3 |
CNF Powder | 109.1 | 3.8 × 10−1 | −3.3 × 10−5 |
Sample | b (μVK−2) | c (μV) | Tp (K) | Ep − EF (eV) |
---|---|---|---|---|
CWF@1.6 CNF | 1.4 × 10−2 | −1.7 × 104 | 1073.7 | 9.2 × 10−2 |
CWF@3.2 CNF | 1.2 × 10−2 | −1.6 × 104 | 1109.2 | 9.6 × 10−2 |
CWF@6.4 CNF | 1.2 × 10−2 | −1.6 × 104 | 1107.6 | 9.5 × 10−2 |
CNF Powder | 1.5 × 10−2 | −1.6 × 104 | 1082.3 | 9.3 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paleo, A.J.; Krause, B.; Cerqueira, M.F.; González-Domínguez, J.M.; Muñoz, E.; Pötschke, P.; Rocha, A.M. Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks. Materials 2023, 16, 4335. https://doi.org/10.3390/ma16124335
Paleo AJ, Krause B, Cerqueira MF, González-Domínguez JM, Muñoz E, Pötschke P, Rocha AM. Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks. Materials. 2023; 16(12):4335. https://doi.org/10.3390/ma16124335
Chicago/Turabian StylePaleo, Antonio J., Beate Krause, Maria F. Cerqueira, Jose M. González-Domínguez, Enrique Muñoz, Petra Pötschke, and Ana M. Rocha. 2023. "Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks" Materials 16, no. 12: 4335. https://doi.org/10.3390/ma16124335
APA StylePaleo, A. J., Krause, B., Cerqueira, M. F., González-Domínguez, J. M., Muñoz, E., Pötschke, P., & Rocha, A. M. (2023). Thermoelectric Properties of Cotton Fabrics Dip-Coated in Pyrolytically Stripped Pyrograf® III Carbon Nanofiber Based Aqueous Inks. Materials, 16(12), 4335. https://doi.org/10.3390/ma16124335