Imaging of Fiber Waviness in Thick Composites with Unknown Material Properties Using Probability-Based Ultrasound Non-Reciprocity
Abstract
:1. Introduction
2. Simulation and Experiment Setup
3. Results and Discussions
3.1. Defect Imaging and Differentiation in Non-Wavy Composites
3.2. Defect Imaging and Differentiation in Wavy Composites
4. Conclusions
- Ultrasonic images of large voids with a 2 mm diameter in traditional B-scans may be distorted by fiber waviness and masked by reflections from the thick resin layers near the surface. The presence of fiber waviness cannot be determined in thick composites with diverse defects using traditional pulse echo or through transmission testing.
- Fiber waviness introduces difference in the transmission coefficients of ultrasound under distinct frequencies when the propagation direction is reversed. Due to dispersion behaviors of ultrasound in composites, ultrasound non-reciprocity in terms of group velocity generates in the wavy composites. Such ultrasound non-reciprocity is sensitive to fiber angle gradient caused by fiber waviness.
- The proposed probability-based diagnostic algorithm on ultrasound non-reciprocity successfully imaged and identified fiber waviness in thick wavy composites regardless of the presence of voids. With the combination of transmitted and reflected wave energy, the proposed method can improve the reliability of the ultrasonic characterization of diverse defects in the thick composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, H.; Wang, Y.; Sun, H.; Li, W.; Qing, X. Identification and Imaging of Multi-Defects on a Complicated Composite Structure by Ultrasonic Guided Wave. Polym. Test. 2022, 106, 107466. [Google Scholar] [CrossRef]
- Zhang, L.; Tham, Z.W.; Chen, Y.F.; Tan, C.Y.; Cui, F.; Mutiargo, B.; Ke, L. Defect Imaging in Carbon Fiber Composites by Acoustic Shearography. Compos. Sci. Technol. 2022, 223, 109417. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, M.; Li, Q.; Ang, Y. Visualized Characterization of Diversified Defects in Thick Aerospace Composites Using Ultrasonic B-Scan. Compos. Commun. 2020, 22, 100435. [Google Scholar] [CrossRef]
- Yuan, S.; Yu, X. Ultrasonic Non-Destructive Evaluation of Selectively Laser-Sintered Polymeric Nanocomposites. Polym. Test. 2020, 90, 106705. [Google Scholar] [CrossRef]
- Ciecieląg, K.; Kęcik, K.; Skoczylas, A.; Matuszak, J.; Korzec, I.; Zaleski, R. Non-Destructive Detection of Real Defects in Polymer Composites by Ultrasonic Testing and Recurrence Analysis. Materials 2022, 15, 7335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, M.; Li, Q.; Png, M. Baseline-Free Defect Evaluation of Complex-Microstructure Composites Using Frequency-Dependent Ultrasound Reflections. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106090. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Z.; Liu, S.; Yang, Y.; Zhang, L. Evaluation of Carbon Fiber Composite Repairs Using Asymmetric-Frequency Ultrasound Waves. Compos. Part B Eng. 2020, 181, 107534. [Google Scholar] [CrossRef]
- Hong, M.; Mao, Z.; Todd, M.D.; Su, Z. Uncertainty Quantification for Acoustic Nonlinearity Parameter in Lamb Wave-Based Prediction of Barely Visible Impact Damage in Composites. Mech. Syst. Signal Process. 2017, 82, 448–460. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Su, Z. Dispersed Sensing Networks in Nano-Engineered Polymer Composites: From Static Strain Measurement to Ultrasonic Wave Acquisition. Sensors 2018, 18, 1398. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zhang, Z.; Zhang, Z.; Zhou, L. Quantitative Investigations on Multi-Layer Interface Debonding Behaviors for Sisal Fiber Reinforced Composites Using Acoustic Emission and Finite Element Method. Compos. Part B Eng. 2020, 196, 108128. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, H.; Zhang, S.; Li, F.; Jin, S. A Phased Array Ultrasonic-Based Enhanced Strategy of Critically Refracted Longitudinal (LCR) Wave Technique. NDT E Int. 2023, 133, 102765. [Google Scholar] [CrossRef]
- Jin, H.; Yan, J.; Liu, X.; Li, W.; Qing, X. Quantitative Defect Inspection in the Curved Composite Structure Using the Modified Probabilistic Tomography Algorithm and Fusion of Damage Index. Ultrasonics 2021, 113, 106358. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, X.; Wang, Y.; Wang, Y.; Qing, X. Lamb Wave-Based Damage Imaging of CFRP Composite Structures Using Autoencoder and Delay-and-Sum. Compos. Struct. 2023, 303, 116263. [Google Scholar] [CrossRef]
- Rao, J.; Yang, F.; Mo, H.; Kollmannsberger, S.; Rank, E. Quantitative Reconstruction of Defects in Multi-Layered Bonded Composites Using Fully Convolutional Network-Based Ultrasonic Inversion. J. Sound Vib. 2023, 542, 117418. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Li, L.; Chen, G.; Cui, F. Reconstruction of Composite Stiffness Matrix with Array-Guided Wave-Based Genetic Algorithm. Materials 2022, 15, 8715. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yu, K.; Li, H.; Zhang, H.; Ding, Y.; Tu, D. A Loading Assisted Diffuse Wave Inspection of Delamination in a Unidirectional Composite. Appl. Acoust. 2021, 177, 107868. [Google Scholar] [CrossRef]
- Li, Y.; Yao, K.; Li, X. An Ultrasonic Signal Reconstruction Algorithm of Multilayer Composites in Non-Destructive Testing. Appl. Acoust. 2022, 186, 108461. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, H.; Hu, Q.; Zhang, Z.; Leung, C.M. Floquet Wave Theory-Based Time-Corrected Ultrasonic Total Focusing Method for Fiber-Reinforced Composite Laminate. Ultrasonics 2021, 116, 106467. [Google Scholar] [CrossRef]
- Nelson, L.J.; Smith, R.A. Fibre Direction and Stacking Sequence Measurement in Carbon Fibre Composites Using Radon Transforms of Ultrasonic Data. Compos. Part A Appl. Sci. Manuf. 2019, 118, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Y.; Song, J.; Zhu, Q.; Ma, X. The Wavenumber Imaging of Fiber Waviness in Hybrid Glass–Carbon Fiber Reinforced Polymer Composite Plates. J. Compos. Mater. 2021, 55, 4633–4643. [Google Scholar] [CrossRef]
- Thalapil, J.; Sawant, S.; Tallur, S.; Banerjee, S. Guided Wave Based Localization and Severity Assessment of In-Plane and out-of-Plane Fiber Waviness in Carbon Fiber Reinforced Composites. Compos. Struct. 2022, 297, 115932. [Google Scholar] [CrossRef]
- Ma, T.; Li, Y.; Zhou, Z.; Meng, J. Wrinkle Detection in Carbon Fiber-Reinforced Polymers Using Linear Phase FIR-Filtered Ultrasonic Array Data. Aerospace 2023, 10, 181. [Google Scholar] [CrossRef]
- Mizukami, K.; Hioki, S.; Takahashi, Y.; Ogi, K. Experimental and Numerical Analysis of Eddy Current Sensor Signal Induced by Out-of-Plane Fiber Waviness in Carbon Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107173. [Google Scholar] [CrossRef]
- Pain, D.; Drinkwater, B.W. Detection of Fibre Waviness Using Ultrasonic Array Scattering Data. J. Nondestruct. Eval. 2013, 32, 215–227. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Liu, M.; Yang, W.; Ang, Y. Through Transmission Ultrasonic Inspection of Fiber Waviness for Thickness-Tapered Composites Using Ultrasound Non-Reciprocity: Simulation and Experiment. Ultrasonics 2022, 123, 106716. [Google Scholar] [CrossRef]
- Smith, R.A.; Nelson, L.J.; Mienczakowski, M.J.; Wilcox, P.D. Ultrasonic Tracking of Ply Drops in Composite Laminates. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1706, p. 050006. [Google Scholar]
- Yang, X.; Ju, B.-F.; Kersemans, M. Assessment of the 3D Ply-by-Ply Fiber Structure in Impacted CFRP by Means of Planar Ultrasound Computed Tomography (PU-CT). Compos. Struct. 2022, 279, 114745. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, L.; Zhang, H.; Zhang, T.; Zhu, Q. Phased Array Ultrasonic Inspection and Automated Identification of Wrinkles in Laminated Composites. Compos. Struct. 2022, 300, 116170. [Google Scholar] [CrossRef]
- Tayong, R.B.; Mienczakowski, M.J.; Smith, R.A. 3D Ultrasound Characterization of Woven Composites. AIP Conf. Proc. 2018, 1949, 130008. [Google Scholar]
- Yang, X.; Ju, B.; Kersemans, M. Ultrasonic Tomographic Reconstruction of Local Fiber Orientation in Multi-Layer Composites Using Gabor Filter-Based Information Diagram Method. NDT E Int. 2021, 124, 102545. [Google Scholar] [CrossRef]
- Liu, M.; Li, Z.; Wang, S.; Zhang, Z.; Leung, C.M. Quantitative Characterization of Out-of-Plane Fiber Wrinkling in Thick CFRP with Double-Side Inverse-Variance Weight-Synthetic Ultrasonic Imaging. Compos. Part A Appl. Sci. Manuf. 2023, 166, 107376. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, S.; Li, Q.; Cui, F.; Malcolm, A.A.; Su, Z.; Liu, M. Ultrasonic Detection and Characterization of Delamination and Rich Resin in Thick Composites with Waviness. Compos. Sci. Technol. 2020, 189, 108016. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Cao, A.; Yeoh, W.; Liu, M.; Yang, W. Defect Identification in Thick Porous and Wavy Composites with Hybrid Use of Ultrasound Non-Reciprocity and Scattering. Compos. Sci. Technol. 2022, 225, 109514. [Google Scholar] [CrossRef]
- Chen, H.; Xu, K.; Liu, Z.; Ta, D. Ellipse of Uncertainty Based Algorithm for Quantitative Evaluation of Defect Localization Using Lamb Waves. Ultrasonics 2022, 125, 106802. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Li, Q.; Yang, W.; Zhang, Z. Frequency Shifting of Transmitted Ultrasound in Thick Composites Containing Fiber Wrinkles and Its Application in Non-Destructive Evaluation. Compos. Struct. 2023, 314, 116939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cao, A.; Li, Q.; Yang, W.; Li, Y. Imaging of Fiber Waviness in Thick Composites with Unknown Material Properties Using Probability-Based Ultrasound Non-Reciprocity. Materials 2023, 16, 3786. https://doi.org/10.3390/ma16103786
Zhang Z, Cao A, Li Q, Yang W, Li Y. Imaging of Fiber Waviness in Thick Composites with Unknown Material Properties Using Probability-Based Ultrasound Non-Reciprocity. Materials. 2023; 16(10):3786. https://doi.org/10.3390/ma16103786
Chicago/Turabian StyleZhang, Zhen, Andong Cao, Qian Li, Weidong Yang, and Yan Li. 2023. "Imaging of Fiber Waviness in Thick Composites with Unknown Material Properties Using Probability-Based Ultrasound Non-Reciprocity" Materials 16, no. 10: 3786. https://doi.org/10.3390/ma16103786
APA StyleZhang, Z., Cao, A., Li, Q., Yang, W., & Li, Y. (2023). Imaging of Fiber Waviness in Thick Composites with Unknown Material Properties Using Probability-Based Ultrasound Non-Reciprocity. Materials, 16(10), 3786. https://doi.org/10.3390/ma16103786