Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Waste Biomass
2.2. Determination of Moisture Content
2.3. Determination of Particle Size Distribution
2.4. Determination of Higher Heating Value and Lower Heating Value
2.5. Carbon and Nitrogen Content
2.6. Pellet Production
2.7. Physical and Bulk Density
2.8. Strength Properties of Pellets
3. Results and Discussion
3.1. Feedstock Characteristics
- HHV of sage waste biomass:
- LHV of sage waste biomass:
- HHV of rye bran:
- LHV of sage waste biomass:
3.2. Pelletization Process and Pellet Characteristics
3.2.1. Energy Consumption
3.2.2. Physical and Bulk Density of Pellets
3.2.3. Pellet Durability Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perspektywy Rozwoju Energii Odnawialnej W Polsce. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_REmap_Poland_paper_2015_PL.PDF?la=en&hash=37E52205C649C5FF87FB1DAC3127ABF5B5FA35E5 (accessed on 1 December 2022).
- Renewables 2022. Global Status Report. 2022. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 1 December 2022).
- eia U.S. Energy Information Administration. Available online: https://www.eia.gov/energyexplained/biomass (accessed on 1 December 2022).
- Azócar, L.; Hermosilla, N.; Gay, A.; Rocha, S.; Díaz, J.; Jara, P. Brown pellet production using wheat straw from southern cities in Chile. Fuel 2019, 237, 823–832. [Google Scholar] [CrossRef]
- Obidziński, S.; Hejft, R.; Dołżyńska, M. Study of cereal waste granulation process. Przem. Chem. 2017, 96, 2360–2363. (In Polish) [Google Scholar] [CrossRef]
- Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 2011, 92, 699–706. [Google Scholar] [CrossRef]
- Gendek, A. Combustion heat and calorific value of the mix of sawdust and cones of common pine (Pinus sylvestris L.). Ann. Wars. Univ. Life Sci. Agric. (Agric. For. Eng.) 2015, 66, 137–144. [Google Scholar]
- Stasiak, M.; Molenda, M.; Bańda, M.; Wiącek, J.; Parafiniuk, P.; Gondek, E. Mechanical and combustion properties of sawdust—Straw pellets blended in different proportions. Fuel Process. Technol. 2017, 156, 366–375. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Blanchet, P.; Nguyen, Q.N.; Adjalle, K. Optimizing quality of wood pellets made of hardwood processing residues. Forests 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, C.; Moya, R.; Tomazello-Filho, M.; Valaert, J. Quality of pellets made from agricultural and forestry crops in Costa Rican tropical climates. BioResources 2015, 10, 482–498. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- Obidziński, S.; Dołżyńska, M.; Kowczyk-Sadowy, M.; Jadwisieńczak, K.; Sobczak, P. Densification and fuel properties of onion husks. Energies 2019, 12, 4687. [Google Scholar] [CrossRef] [Green Version]
- Dołżyńska, M.; Obidziński, S.; Kowczyk-Sadowy, M.; Krasowska, M. Densification and combustion of cherry stones. Energies 2019, 12, 3042. [Google Scholar] [CrossRef] [Green Version]
- Kobus, Z.; Panasiewicz, M.; Zawiślak, K.; Sobczak, P.; Mazur, J.; Guz, T.; Nadulski, R. Analysis of possibilities of obtaining essential oils from herbaceous plants waste. Inżynieria Rol. 2014, 1, 59–64. (In Polish) [Google Scholar]
- Kumar, M.; Kumar, V.; Roy, D.; Kushwaha, R.; Vaiswani, S. Application of herbal feed additives in animal nutrition—A review. Int. J. Livest. Res. 2014, 4. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Püssa, T.; Valner, C.; Malmiste, B.; Arak, E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Suganya, T.; Senthilkumar, S.; Deepa, K.; Muralidharan, J.; Gomathi, G.; Gobiraju, S. Herbal feed additives in poultry. Int. J. Sci. Environ. Technol. 2016, 5, 1137–1145. [Google Scholar]
- Nowak, D.; Syta, M. Identification of the impact of grinding degree, pretreatment and drying method on content of betalaine dyes in dried beet material. Inżynieria Rol. 2009, 13, 131–137. (In Polish) [Google Scholar]
- Czubaszek, R. The assessment of the suitability af lemon balm and alder buckthorn wastes for the biogas production. J. Ecol. Eng. 2019, 20, 152–158. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Kim, J.; Shin, G.-A.; Lee, C.-G.; Seungho Jung, S.; Lee, J. Catalytic pyrolysis as a technology to dispose of herbal medicine waste. Catalysts 2020, 10, 826. [Google Scholar] [CrossRef]
- Haq, T.; Begum, T.; Ali, T.A.; Iqbal, S.; Khan, F.A. Recycling of biomass waste from herbal pharmaceutical industry by windrow composting. Int. J. Sci. Res. Publ. 2016, 6, 257–259. [Google Scholar]
- Kowalski, R.; Wawrzykowski, J. Essential oils analysis in dried materials and granulates obtained from Thymus vulgaris L., Salvia officinalis L., Mentha piperita L. and Chamomilla recutita L. Flavour Fragr. J. 2009, 24, 31–35. [Google Scholar] [CrossRef]
- Das, V.; Satyanarayan, S.; Satyanarayan, S. Recycling of recalcitrant solid waste from herbal pharmaceutical industry through vermicomposting. Int. J. Environ. Agric. Biotech. 2017, 2, 1151–1161. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Piotrowska-Niczyporuk, A.; Bajguz, A. Fatty acid methyl esters from the herbal industry wastes as a potential feedstock for biodiesel production. Energies 2020, 13, 3702. [Google Scholar] [CrossRef]
- Kowalska, H. Sustainable technologies—Utilization of plant by-products. Przemysł Spożywczy 2018, 72, 28–31. (In Polish) [Google Scholar] [CrossRef]
- Lewicki, A.; Pilarski, K.; Janczak, D.; Czekała, W.; Rodríguez Carmona, P.C.; Cieślik, M.; Witaszek, K.; Zbytek, Z. The biogas production from herbs and waste from herbal industry. J. Res. Appl. Agric. Eng. 2013, 58, 114–117. [Google Scholar]
- Haghighi, M.; Afsharikia, A.; Mozafariyan, M.; Pessarakli, M.; Bolandnazar, A. Usage of herbal (thyme and chicory) waste as an organic substrate in cucumber production. Commun. Soil Sci. Plant Anal. 2014, 45, 2607–2619. [Google Scholar] [CrossRef]
- Obidziński, S.; Joka, M.; Fijoł, O. Two-stage agglomeration of fine-grained herbal nettle waste. Int. Agrophysics 2017, 31, 515–523. [Google Scholar] [CrossRef]
- Tulska, E. Możliwości Zagospodarowania Surowców Odpadowych do Produkcji Opakowań; Wydawnictwo Fundacji Promovendi: Łódź, Poland, 2018. (In Polish) [Google Scholar]
- Kisworo, A.N.; Agus, A.; Kustantinah, K.; Suwignyo, B. Physicochemical characteristics identification and secondary metabolite analysis of solid herbal waste as source of feed rich fiber and supplement for ruminants. Anim. Prod. 2016, 18, 75–84. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, Z.; Sun, X.; Li, F.; Luo, J.; Chen, T.; Xi, Q.; Zhang, Y.; Sun, J. Fermentation quality of herbal tea residue and its application in fattening cattle under heat stress. BMC Vet. Res. 2021, 17, 348. [Google Scholar] [CrossRef]
- Kowczyk-Sadowy, M.; Piekut, J.; Obidziński, S. The effect of potato pulp addition on the compaction of couch grass mixture. Przem. Chem. 2018, 97, 737–740. (In Polish) [Google Scholar] [CrossRef]
- Teixeira, E.M.B.; Carvalho, M.R.B.; Neves, V.A.; Silva, M.A.; Arantes-Pereira, L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 2014, 147, 51–54. [Google Scholar] [CrossRef]
- Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C.; Yu, Z. Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livest. Sci. 2011, 135, 84–92. [Google Scholar] [CrossRef]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of garlic and juniper berry essential oils on ruminal fermentation, site and extent of digestion in lactating cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maenner, K.; Vahjen, W.; Simon, O. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility and selected bacterial groups in the gastrointestinal tract of piglets. J. Anim. Sci. 2011, 89, 2106–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Tazi, S.M.A.; Mukhtar, M.A.; Mohamed, K.A.; Tabidi, M.H. Effect of using black pepper as natural feed additive on performance and carcass quality of broiler chicks. Glob. Adv. Res. J. Agric. Sci. 2014, 3, 113–118. [Google Scholar]
- Singh, D.; Suthar, S. Vermicomposting of herbal pharmaceutical industry waste: Earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresour. Technol. 2012, 112, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Zeng, G.M.; Chen, Y.N.; Yu, M.; Yu, Z.; Li, H.; Yu, Y.; Huang, H. Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour. Technol. 2011, 102, 2950–2956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Wang, B.Y.; Liu, Z.W. Impacts of plant secondary metabolites from conifer litter on the decomposition of Populus purdomii litter. J. For. Res. 2019, 30, 2237–2245. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresour. Technol. 2016, 217, 190–199. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresour. Technol. 2018, 249, 182–188. [Google Scholar] [CrossRef]
- Greff, B.; Szigeti, J.; Varga, A.; Lakatos, E.; Sáhó, A.; Varga, L. Effect of bacterial inoculation on co composting of lavender (Lavandula angustifolia Mill.) waste and cattle manure. 3 Biotech 2021, 11, 306. [Google Scholar] [CrossRef]
- Najda, A. Zmienność Ontogenetyczna Mięty (Mentha Species) Czynnikiem Warunkującym Zawartość Składników Bioaktywnych w Surowcu; Wydawnictwo Uniwersytetu Przyrodniczego: Lublin, Poland, 2017. (In Polish) [Google Scholar]
- Rokicki, T.; Golonko, M. Foreign trade of herbs and spices in the world. Zesz. Nauk. SGGW W Warszawie—Probl. Rol. Swiat. 2017, 17, 224–233. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Newerli-Guz, J. The cultivation of herbal plants in Poland. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz. 2016, 18, 268–274. (In Polish) [Google Scholar]
- Wrzesińska-Jędrusiak, E.; Klimek, K.; Najda, A.; Łaska-Zieja, B.; Olesienkiewicz, A. Study on the potential of biogas production from herbal residues. Przem. Chem. 2020, 99, 224–227. (In Polish) [Google Scholar] [CrossRef]
- Ubwa, S.T.; Asemave, K.; Oshido, B.; Idoko, A. Preparation of biogas from plants and animal waste. Int. J. Sci. Technol. 2013, 2, 480–485. [Google Scholar]
- Obidziński, S. Pelletization process of postproduction plant waste. Int. Agrophysics 2012, 26, 279–284. [Google Scholar] [CrossRef]
- Obidziński, S. Profile of water activity and geometric parameters of lemon balm wastes in the aspect of their utilisation as an addition to fodders. Acta Agrophysica 2013, 20, 113–124. (In Polish) [Google Scholar]
- Gill, N.; Dogra, R.; Dogra, B. Influence of moisture content, particle size, and binder ratio on quality and economics of rice straw briquettes. BioEnergy Res. 2018, 11, 54–68. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahmoud, E.; Aslam, M.; Naqvi, S.R.; Juchelková, D.; Bhatia, S.K.; Badruddin, I.A.; Khan, T.M.Y.; Hoang, A.T.; Palacky, P. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. 2022, 1–39. [Google Scholar] [CrossRef]
- Blancarte-Contreras, E.; Corral-Rivas, S.; Domínguez-Gómez, T.G.; Lujan-Soto, J.E.; Goche-Télles, J.R.; Montiel-Antuna, E. Improving the physical, mechanical and energetic characteristics of pine sawdust by the addition of up to 40% Agave durangensis gentry pellets. Energies 2022, 15, 3711. [Google Scholar] [CrossRef]
- Chojnacki, J.; Zdanowicz, A.; Ondruška, J.; Šooš, Ľ.; Smuga-Kogut, M. The Influence of apple, carrot and red beet pomace content on the properties of pellet from barley straw. Energies 2021, 14, 405. [Google Scholar] [CrossRef]
- Kulokas, M.; Praspaliauskas, M.; Pedišius, N. Investigation of buckwheat hulls as additives in the production of solid biomass fuel from straw. Energies 2021, 14, 265. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Contreras-Trejo, J.C.; Pompa-García, M.; Pulgarín-Gámiz, M.A.; Rutiaga-Quiñones, J.G.; Pámanes-Carrasco, G.; Ngangyo-Heya, M. Agro-pellets from oil palm residues/pine sawdust mixtures: Relationships of their physical, mechanical and energetic properties, with the raw material chemical structure. Appl. Sci. 2020, 10, 6383. [Google Scholar] [CrossRef]
- Stolarski, M.; Szczukowski, S.; Tworkowski, J.; Kwiatkowski, J.; Grzelczyk, M. Characteristic of chips and pellets from the Coppice willow and Virginia mallow biomass as a fuel. Probl. Inżynierii Rol. 2005, 13, 13–22. (In Polish) [Google Scholar]
- Gonzalez, W.A.; Lopez, D.; Perez, J.F. Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renew. Energy 2020, 147, 1139–1150. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Słowik, T.; Zając, G.; Blicharz-Kania, A.; Zdybel, B.; Andrejko, D.; Obidziński, S. Energy parameters of miscanthus biomass pellets supplemented with copra meal in terms of energy consumption during the pressure agglomeration process. Energies 2021, 14, 4167. [Google Scholar] [CrossRef]
- Harasym, J. Biorafinacja ziarna zbożowego. Przegląd Zbożowo Młynarski 2011, 55, 5–7. (In Polish) [Google Scholar]
- Arendt, E.K.; Zannini, E. Cereal grains for the food and beverage industries. Woodhead Publ. Ser. Sci. Technol. Nutr. 2013, 248, 220–243. [Google Scholar]
- Kamal-Eldin, A.; Nygaard Laerke, H.; Bach Knudsen, K.-E.; Lampi, A.-M.; Piironen, V.; Adlercreutz, H.; Åman, P. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr. Res. 2009, 53, 1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcour, J.A.; Poutanen, K. Fibre-Rich and Wholegrain Foods. A Volume in Woodhead Publishing Series in Food Science, Technology and Nutrition, 1st ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 1–496. [Google Scholar]
- Śmiechowska, M.; Jurasz, M. Zawartość włókna surowego w wybranych produktach zbożowych. Probl. Hig. I Epidemiol. 2014, 95, 429–432. (In Polish) [Google Scholar]
- Obidziński, S.; Dołżyńska, M.; Stasiełuk, W. Production of fuel pellets from a mixture of sawdust and rye bran. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 214, p. 012073. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Piekarski, W.; Słowik, T.; Zając, G.; Krzaczek, P.; Sobczak, P. Właściwości mechaniczne peletów z biomasy ślazowca pensylwańskiego. Autobusy: Tech. Eksploat. Syst. Transp. 2011, 12, 420–424. (In Polish) [Google Scholar]
- Zając, G.; Szyszlak-Bargłowicz, J. Wpływ dodatku otrąb żytnich na własności energetyczne peletów z biomasy ślazowca pensylwańskiego. Autobusy: Tech. Eksploat. Syst. Transp. 2011, 10, 459–464. (In Polish) [Google Scholar]
- PN-EN ISO 18134-1:2015-11; Solid Biofuels—Determination of Moisture Content. Drier Method. Part 1: Total Moisture—Reference Method. Polish Committee for Standardization: Warsaw, Poland, 2015.
- PN-R-64798:2009; Fodder—Determination of the Grinding. Polish Committee for Standardization: Warsaw, Poland, 2009. (In Polish)
- PN-ISO 1928:2020-05; Solid Fuels. Determination of Heat of Combustion by Combustion in a Calorimeter Bomb and Calculation of Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2020.
- Kordylewski, W. Spalanie i Paliwa; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2008; pp. 1–478. (In Polish) [Google Scholar]
- PN-EN ISO 17828:2016-02; Solid Biofuels—Determination of the Bulk Density. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN ISO 17831-1:2016-02; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes. Part 1: Pellets. Polish Committee for Standardization: Warsaw, Poland, 2016.
- Harun, N.Y.; Afzal, M.T. Effect of particle size on mechanical properties of pellets made from biomass blends. Procedia Eng. 2016, 148, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Jacinto, R.C.; Brand, M.A.; da Cunha, A.B.; Souza, D.L.; da Silva, M.V. Use of waste from the production chain of pinion for the production of pellets for energy generation. Floresta 2017, 47, 353–363. [Google Scholar]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Pilot scale production of fuel pellets from waste biomass leaves: Effect of milling size on pelletization process and pellet quality. Fuel 2021, 285, 119145. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 2006, 30, 648–654. [Google Scholar] [CrossRef]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energy 2020, 49, 11–21. [Google Scholar] [CrossRef]
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Analysis of pelletizing from corn cob waste. J. Environ. Manag. 2018, 228, 303–311. [Google Scholar] [CrossRef]
- Gageanu, I.; Voicu, G.; Vladut, V.; Voicea, I. Experimental research on influence of recipes used on quality of biomass pellets. Eng. Rural. Dev. 2017, 785–791. [Google Scholar] [CrossRef]
- Nakomcic-Smaragdakis, B.; Cepic, Z.; Dragutinovic, N. Analysis of solid biomass energy potential in Autonomous Province of Vojvodina. Renew. Sustain. Energy Rev. 2016, 57, 186–191. [Google Scholar] [CrossRef]
- Obidziński, S.; Puchlik, M.; Dołżyńska, M. Pelletization of post-harvest tobacco waste and investigation of flue gas emissions from pellet combustion. Energies 2020, 13, 6002. [Google Scholar] [CrossRef]
- Dołżyńska, M.; Obidziński, S.; Piekut, J.; Yildiz, G. The utilization of plum stones for pellet production and investigation of post-combustion flue gas emissions. Energies 2020, 13, 5107. [Google Scholar] [CrossRef]
- Gendek, A.; Aniszewska, M.; Malat’ák, J.; Velebil, J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy 2018, 117, 173–179. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Khairy, M. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder. Iran. J. Energy Environ. 2017, 8, 71–87. [Google Scholar]
- Čajová Kantová, N.; Holubčík, M.; Čaja, A.; Trnka, J.; Jandačka, J. Analyses of pellets produced from spruce sawdust, spruce bark, and pine cones in different proportions. Energies 2022, 15, 2725. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, B.; Wu, S.; Guo, W.; Zhang, J.; Wu, Z.; Wang, Z.; Lim, J.C. Effect of torrefaction pretreatment on the fast pyrolysis behavior of biomass: Product distribution and kinetic analysis on spruce-pin-fir sawdust. J. Anal. Appl. Pyrolysis 2021, 158, 105259. [Google Scholar] [CrossRef]
- Garcia, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Shi, X.; Lei, W.; Huang, T.; Bai, C. Experimental investigation on the energy consumption, physical, and thermal properties of a novel pellet fuel made from wood residues with microalgae as a binder. Energies 2019, 12, 3425. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.S. Pelleting of pine and switchgrass blends: Effect of process variables and blend ratio on the pellet quality and energy consumption. Energies 2019, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Emadi, B.; Iroba, K.L.; Tabil, L.G. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl. Energy 2017, 198, 312–319. [Google Scholar] [CrossRef]
- Souček, J.; Jasinskas, A. Assessment of the use of potatoes as a binder in flax heating pellets. Sustainability 2020, 12, 10481. [Google Scholar] [CrossRef]
- Brand, M.A.; Jacinto, R.C. Apple pruning residues: Potential for burning in boiler systems and pellet production. Renew. Energy 2020, 152, 458–466. [Google Scholar] [CrossRef]
- Espuelas, S.; Marcelino, S.; Echeverría, A.M.; Castillo, J.M.; Seco, A. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel 2020, 278, 118310. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Yuan, Y.; Chen, H.; Zhang, W.; Cai, H.; Gao, F. Densification of yak manure biofuel pellets and evaluation of parameters: Effects on properties. Energies 2022, 15, 1621. [Google Scholar] [CrossRef]
- Kraszkiewicz, A.; Kachel-Jakubowska, M.; Szpryngiel, M.; Niedziółka, I. The analysis of the selected quality properties of pellets made of plant raw materials. Inżynieria Rol. 2013, 17, 167–173. (In Polish) [Google Scholar]
No. | Moisture Content (%) | Higher Heating Value (MJ/kg) | Lower Heating Value (MJ/kg) | ||
---|---|---|---|---|---|
Wet Basis | Dry Basis | Wet Basis | Dry Basis | ||
1 | 10.1 | 19.347 | 21.502 | 18.122 | 20.410 |
2 | 19.415 | 21.575 | 18.188 | 20.483 | |
3 | 19.553 | 21.728 | 18.326 | 20.437 | |
4 | 19.270 | 21.414 | 18.043 | 20.322 | |
Average | 10.1 | 19.396 | 21.554 | 18.169 | 20.413 |
No. | Moisture Content (%) | Higher Heating Value (MJ/kg) | Lower Heating Value (MJ/kg) | ||
---|---|---|---|---|---|
Wet Basis | Dry Basis | Wet Basis | Dry Basis | ||
1 | 13.2 | 16.850 | 19.409 | 15.196 | 17.874 |
2 | 16.714 | 19.279 | 15.061 | 17.718 | |
3 | 16.738 | 19.358 | 15.084 | 17.745 | |
4 | 16.808 | 19.305 | 15.154 | 17.824 | |
Average | 13.2 | 16.778 | 19.320 | 15.124 | 17.790 |
Content of Rye Bran (%) | Higher Heating Value (MJ kg−1) | Lower Heating Value (MJ kg−1) |
---|---|---|
15% Moisture Content | 15% Moisture Content | |
0 | 18.316 | 17.023 |
5 | 18.221 | 16.909 |
10 | 18.126 | 16.796 |
15 | 18.031 | 16.682 |
20 | 17.936 | 16.569 |
No. | Rye Bran | Sage Straw | ||
---|---|---|---|---|
Nitrogen (%) | Total Carbon (%) | Nitrogen (%) | Total Carbon (%) | |
1 | 2.41 | 46.33 | 1.79 | 35.23 |
2 | 2.45 | 46.33 | 1.75 | 34.34 |
3 | 2.48 | 46.30 | 1.83 | 35.20 |
Average | 2.45 | 46.32 | 1.79 | 34.92 |
SD (%) | 0.035 | 0.017 | 0.040 | 0.510 |
Bran Content (%) | Pelletizer’s Power/Energy Consumption (kW/kWh t−1) | Physical Density (kg m−3) | Bulk Density (kg m−3) | PDI (%) |
---|---|---|---|---|
0 | 3.75/107 | 1233.99 | 626.24 | 97.17 |
10 | 3.57/102 | 1192.80 | 611.54 | 97.64 |
15 | 3.38/96 | 1177.18 | 583.22 | 98.14 |
20 | 3.19/91 | 1145.05 | 545.16 | 97.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadwisieńczak, K.; Obidziński, S.; Choszcz, D. Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran. Materials 2023, 16, 58. https://doi.org/10.3390/ma16010058
Jadwisieńczak K, Obidziński S, Choszcz D. Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran. Materials. 2023; 16(1):58. https://doi.org/10.3390/ma16010058
Chicago/Turabian StyleJadwisieńczak, Krzysztof, Sławomir Obidziński, and Dariusz Choszcz. 2023. "Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran" Materials 16, no. 1: 58. https://doi.org/10.3390/ma16010058
APA StyleJadwisieńczak, K., Obidziński, S., & Choszcz, D. (2023). Assessment of the Physical and Energetic Properties of Fuel Pellets Made from Sage Waste Biomass with the Addition of Rye Bran. Materials, 16(1), 58. https://doi.org/10.3390/ma16010058