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Abstract: The aim of the presented research was to determine the suitability of cherry stones as a
solid fuel. Mixtures of cherry stones with the addition of 10%, 15%, and 20% rye bran as a binder
were subjected to the pressure agglomeration process in a rotary matrix working system (170, 220,
and 270 rpm). The density of pellets, their kinetic durability, and power demand of the granulator’s
device for each mix were determined. The highest quality was characterized by pellets containing
20% rye bran, which were combusted in a 25 kW boiler with a retort grate. The concentration of CO,
CO2, NO, SO2, HCl, and O2 in the exhaust gas was tested. On the basis of the results of combustion,
high heating value (HHV), low heating value (LHV), and elemental analysis, it was found that
pellets from cherry stones with the addition of rye bran can serve as a substitute for wood pellets in
low-power installations.
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1. Introduction

Each production system, including agri-food processing, results in the creation of various types of
residues. As a result of agricultural activity and the agri-food industry, mainly organic residues of
vegetable and animal origin are created with specific fertilizing, energy, and nutritional properties [1].

Estimates for the European Union in 2016 showed that 88 million metric tonnes (±14 Mt) of
food waste is generated along the food production chain, which gives 173 kg (±27 kg) per capita
per year [2]. Difficulties in the management of the above-mentioned waste are felt throughout the
country in various clusters, dependent primarily on natural conditions, and have a mostly periodic
occurrence (only in the harvest period). The waste has low durability, is cumbersome, produces
harmful products during decomposition, and has a high heterogeneity of chemical composition and
physical characteristics [3–5].

Solid agri-food waste can be subjected to a process of pressure agglomeration (granulation),
as a result of which they obtain a permanent geometric form of a granulate (pellet, agglomerate)
or briquette [6,7]. The granulation (agglomeration, densification) of waste materials facilitates their
transport and storage (high bulk density) and allows their use in installations with automatic feeding
of fuel. Through compaction, it is possible to obtain a product that is a combination of two or more
components, allowing a great deal of freedom in handling the properties of the fuel produced [8].
Kraiem et al. [9] conducted experiments of compaction and combustion pellets from post-production
tomato residues and grape marl, observing high calorific value (dry basis: db) of fuel from tomato
residues (19.5 MJ·kg−1) and grape marc with sawdust 1:1 (16.6 MJ·kg−1) with increased NOx and SOx
emissions for the combustion technology used. Celmaet al. [10] determined that the heating value
of pellets from tomato waste is 27.08 MJ·kg−1 for dry matter, and kinetic durability is 91.02% at a
moisture content of approximately 9%. Kang et al. [11] examined the process of burning dried coffee
grounds. The described research shows high quality coffee grounds as a biofuel, as evidenced by the
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high carbon content (53.05%), which directly translated into a low heating value (LHV)of 18.5 MJ·kg−1.
The combustion was carried out in a low-power boiler (6.5 kW), and the recorded emission value for
NOx was 163 mg·Nm−3, which is a result similar to wood biomass. The high quality of coffee grounds
as a fuel is confirmed by Allesinaet al. [12], giving a high heating value (HHV) of 20.484 MJ·kg−1.
Zając and Szyszlak-Bargłowicz [13], studying granules from safflower with an addition of rye bran,
found that along with the increase in the amount of added bran, the calorific value of the fuel decreases
and the amount of ash formed after combustion increases. Wattana and colleagues [14] performed a
comparison of granulate quality from palm and rubber tree waste (leaves and branches) in various
combinations (in 1:1 ratios). Thermogravimetric analyses of the obtained fuels show that granules
from palm tree leaves and rubber tree leaves are characterized by the highest temperature of ignition
and the lowest reactivity and ash content. Wongsiriamnuay and Tippayawong [15] in their work
describe the problem of developing post-production maize waste, proposing the production of fuel
pellets from them. The tests carried out on a laboratory bench with a closed chamber show that the
produced pellet had favorable physical properties, in other words, a density of more than 1000 kg·m−3

(db) if the compaction temperature was higher than 80 ◦C. Mami et al. [16] found that the gaseous
emissions from olive waste pellets are produced in acceptable concentrations compared to Germany
and European standards and the quality of pellets obtained in their experiment was similar to standard
wood pellets, which are used currently in European markets.

Differences in the presented research create the need for selection of the materials of biological
origin with favorable granulation conditions: the appropriate level of humidity and the size of densified
particles [7,17,18].

This paper presents the results of tests assessing the usefulness of agri-food waste in the form of
cherry stones and rye bran as raw materials for the production of solid fuels in pressure agglomeration
processes. Poland is one of the largest cherry producers in the European Union. According to Nowicka
and co-workers [19], on average, 70% of the cherry harvest is directed for processing purposes, in other
words, the production of frozen foods, concentrates, juices, nectars, jams, preserves, and spirits.
In addition, cherry seeds are heterogeneous in their structure (soft center, hard shell), which in the
combustion processes can cause increased emission of harmful compounds to the atmosphere and
lower the efficiency of thermal processes. The scope of work included assessment of the physical
and chemical parameters of waste (i.e., determination of carbon, hydrogen, nitrogen, sulfur, chlorine,
oxygen, and moisture content, volatile parts, and ash), pressure agglomeration process of waste,
and assessment of the effects of the granule’s combustion in a retort grate boiler.

2. Materials and Methods

2.1. Materials

2.1.1. Plum Stones

The cherry stones used for the tests are shown in Figure 1 in a crushed form for the granulation
process and the form in which they left the processing plant. Over 80% of the particles of crushed
stones were between 2 and 4 mm in size.

The cherry stone, which is usually removed from the fruit, depending on the variety, constitutes
from 8% to 15% of the total weight of the fruit [20,21], thus, tens of thousands of tons of waste are
produced annually in the world, and at the present time they are only used to a small extent [22].
Cherry stones after purification from the remains of the pulp and drying can fulfill the role of filling
in toys for children or in so-called dry hot water bottles [20]. Another one of their uses is in the
production of activated carbon used in the food industry to remove ochratoxin A in the production
of red wine [22,23]. Shells in small quantities are sometimes added to pig feeds to enrich their diet
with dietary fiber and minerals, or are sometimes used in the cosmetics industry as an additive to
epidermal exfoliating cosmetics [19]. In addition, the cosmetics industry uses cherry seed oil as a
source of unsaturated fatty acids and tocopherols that have anti-wrinkle effects [22,24].
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Figure 1. Cherry stones used for the granulation process: (a) in the form in which they left the 
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availability of raw material and the necessity to introduce constructional changes that make it 
possible to adapt stone burning furnaces, these solutions are not in common use. 
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Rye bran represents 10% rye grain and is separated, as a residue, in flour milling processes 
[27,28]. Rye grain is a rich source of fiber, it contains about 17% fiber [29], with rye bran containing 
up to 39% [30], hence they are used as a food additive to support gut peristalsis and lower the energy 
density of food (providing a longer feeling of satiety) [31]. Rye carbohydrate components can be 
divided into starch and non-starch polysaccharides [27]. Starch contained in the bran, due to the 
presence of moisture and the high temperature during the granulation process, gelatinizes to form of 
a sticky gel. The binding properties (binder) of rye bran are used in granulation processes, where 
they can improve the course of the agglomeration process and reduce its energy expenditure 
[12,32,33]. 

Figure 1. Cherry stones used for the granulation process: (a) in the form in which they left the
production plant;(b) in a crumbled form.

According to Purgał and Pasternak [25] and Rzeźnik et al. [26], cherry stones can be used as
an ecological biofuel with high calorific value and low ash content. However, due to the limited
availability of raw material and the necessity to introduce constructional changes that make it possible
to adapt stone burning furnaces, these solutions are not in common use.

2.1.2. Rye Bran

Rye bran used in the research is shown in Figure 2.
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Rye bran represents 10% rye grain and is separated, as a residue, in flour milling processes [27,28].
Rye grain is a rich source of fiber, it contains about 17% fiber [29], with rye bran containing up to
39% [30], hence they are used as a food additive to support gut peristalsis and lower the energy density
of food (providing a longer feeling of satiety) [31]. Rye carbohydrate components can be divided
into starch and non-starch polysaccharides [27]. Starch contained in the bran, due to the presence of
moisture and the high temperature during the granulation process, gelatinizes to form of a sticky gel.
The binding properties (binder) of rye bran are used in granulation processes, where they can improve
the course of the agglomeration process and reduce its energy expenditure [12,32,33].

2.2. Methods

2.2.1. Determination of the Physicochemical Properties of the Raw Materials

The carbon, nitrogen, hydrogen, and sulfur content were determined using the LECO CHN628
analyzer: the carbon and hydrogen content in dry biomass was determined by high-temperature
combustion with IR detection (infrared radiation), nitrogen content by means of a catarometer according
to [34], and sulfur content determined by high-temperature combustion method with IR detection,
in accordance with [35]. The chlorine content in the waste materials was tested by the Faculty
Chemical Laboratory of the Faculty of Civil and Environmental Engineering at Białystok University of



Energies 2019, 12, 3042 4 of 15

Technology in accordance with the method given by the manufacturer of the S2 PICOFOX fluorescence
spectrometer. Moisture content (according to [36]), volatile parts content (according to [37]), and ash
content (according to [38]) testing in cherry stones and rye bran was carried out on the TGA-701
analyzer from LECO. The heat of combustion (high heating value, HHV) was determined in accordance
with [39], using the Kl-12Mn calorimeter. The low heating value (LHV) was calculated based on the
moisture content of the material and its hydrogen content. Bulk density of the analyzed materials was
determined according to [40].

2.2.2. Pressure Agglomeration Process

The granulation process of the tested waste materials was carried out on the SS-4 test stand
(Figure 3), whose main element is the P-300 granulator from Protechnika. The stand was described in
previousworks [32,41–43]. The granulator matrix used in this research was 28 mm in length and had
holes with a 6 mm diameter.
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selected granules (whose edges were ground beforehand in order to approximate their shape to the 
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measured using a conventional caliper with an accuracy of 0.05 mm. The density of the granules was 
calculated as the weight and volume quotient of each granule, then averaged. 
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Figure 3. Stand SS-4: (a) scheme of the station: 1—working system of granulator with a flat matrix,
2—electric motor driving the granulator (Y132M, 7.5kW, 1440obr·min−1), 3—feed of raw material,
4—spill granulate, 5—vibrating dispenser (FRITISCH LABORET 24), 6—universal meter for measuring
the power demand (METROL KWS 1083, max 20kW0), 7—recorder Spider 8, 8—PC computer; (b) view
of the laboratory stand.
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The tests of densification of a mixture of ground cherry stones and rye bran were carried out
where the input values were material and construction parameters:

x1 = zw —rye bran content (10%, 15%, and 20%),
x2 = nm —rotational speed of the granulator matrix (170, 220, and 279 rpm).
The tests for independent variables were the tests for kinetic durability and density of the obtained

pellets and the granulator demand for power.
The kinetic durability of the obtained pellets was determined by the Holmen method

(according to [44]). In order to determine the physical density of pellets, the mass of ten randomly
selected granules (whose edges were ground beforehand in order to approximate their shape to the
roll as closely as possible) was measured with an accuracy of 0.0001 g, and their height was measured
using a conventional caliper with an accuracy of 0.05 mm. The density of the granules was calculated
as the weight and volume quotient of each granule, then averaged.

2.2.3. Combustion of Pellets

Combustion of the produced pellets, in order to verify their combustion effects in low-power
boilers (Figure 4), was carried out at the laboratory of Low Emission Combustion Technologies
described previously [17]. For comparison, whole cherry stones in the form they leave the processing
plant (not chipped) were also combusted.
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Figure 4. Laboratory stand at Low Emission Combustion Technologies: 1—Moderator Unica VentoEko
boiler, 2—boiler controller, 3—fuel tank, 4—exhaust sampling, 5—MCA10 analyzer, 6—Microsoft tablet
for archiving measurement results.

The stand includes a Moderator 2 Unica VentoEko boiler equipped with a 25 kW retort grate and
MCA10 flue gas analyzer from Dr. Födisch.

Samples of a mass of approximately 10 kg were fed into the boiler via a controlled automatic screw
feeder. The settings of the fuel mass flow and the airflow into the combustion chamber were selected
by the boiler controller in the Fuzzy Logic mode; the mass flow of fuel to the combustion chamber was
3.2 kg·h−1. The boiler controller, after establishing stable combustion conditions, can change the flow
conditions to a small extent, which are negligible for the nature of the analyses in this experiment.
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The CO2, CO, NO, SO2, and HCl content in the flue gases was normalized to 10% oxygen content
(O2) according to the formula [45]

Zs2 =
21−O′2(

21−O′′2
)
·Zs1

(
%, mg·m−3

)
(1)

where Zs1 is the actual chemical content in the exhaust gas (%, mg·Nm−3), Zs2 is the content of the
chemical compound in the exhaust gas for a given oxygen content (%, mg·Nm−3),O2’ is the set oxygen
content in the exhaust (%), and O2" is the actual oxygen content in the exhaust gas (%).

The excess air factorλwas calculated based on the following formula used for technical calculations:

λ =
21.5

21.5−O′′2
(2)

3. Results and Discussion

3.1. Physicochemical Properties of Raw Materials

Table 1 presents the results of the elemental composition as well as the moisture, volatiles, and
ash content for the investigated waste.

Table 1. Properties of cherry stones and rye bran.

Property Cherry Stones Rye Bran

Moisture (%) wb 9.30 ± 0.08 10.54 ± 0.16
Bulk density (kg·m−3) wb 472.88 ± 6.84 279.85 ± 2.02

Volatile matter (%) db 70.20 ± 0.25 69.71 ± 0.45
Ash (%) db 1.40 ± 0.001 3.77 ± 0.01

Carbon (%) db 52.72 ± 0.06 46.33 ± 0.04
Hydrogen (%) db 6.50 ± 0.02 6.00 ± 0.02
Nitrogen (%) db 1.34 ± 0.01 2.42 ± 0.01
Sulphur (%) db 0.107 ± 0.001 0.095 ± 0.005
Chlorine (%) db 0.001 0.002
Oxygen 1(%) db 37.93 41.38

HHV (MJ·kg−1) db 22.32 ± 0.10 18.86 ± 0.15
LHV (MJ·kg−1) db 20.618 17.45

1 By difference. db: dry basis; HHV: high heating value; LHV: low heating value.

Both wastes are characterized by similar moisture content, and due to the construction and
process conditions of the pelleting system, before their pressure agglomeration the mixtures had
to be moistened to a moisture content of approximately 20% by adding water to the mixture 24 h
before agglomeration.

The volume of volatile components is an important parameter when assessing the energy efficiency
of solid fuels. Środa and colleagues [46] reported that the main feature distinguishing biomass from
other solid fuels is the high content of volatile parts, which causes its high reactivity. Both tested
materials were characterized by a similar content of volatile parts of about 70%, which is similar to
woody biomass [47]. Rye bran contains more than twice as much ash than plum seeds, which indicates
a higher content of mineral salts that were chemically linked to the carbon structure (natural ashes)
or mineral soil particles that were taken up by the plant during growth or transferred to biomass
during harvesting and transport [48]. The content of ash in biomass is much smaller than that in coal,
although its different origin and chemical nature affect the operation of boiler equipment, where they
cause, among other things, increased settling of slag and ash in the furnace or increased rate of wear of
metal boiler elements due to corrosion [49,50].
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Another parameter, which is significantly different in the tested wastes, is nitrogen content.
During combustion, the nitrogen contained in the fuel is almost completely converted into nitrogen
N2 and nitrogen oxides [51]. The emission of nitrogen oxides from combustion processes and
high-temperature industrial processes is a serious environmental problem. Nitrogen oxides, collectively
referred as NOx, are formed essentially in all combustion processes, mainly as nitrous oxide (NO),
and in smaller amounts as nitrogen dioxide (NO2) and nitrous oxide (N2O). Nitric oxide is then
oxidized to NO2 in an atmosphere of air. Nitric oxide and nitrogen dioxide are precursors to acid rain
and contribute to the formation of photochemical smog, while nitrous oxide is a greenhouse gas [52].
The relatively high nitrogen content in rye bran limits its use in combustion processes and reduces its
share in fuel.

An increase in the rye bran content from 10% to 20% in a mixture with cherry stones caused a
slight decrease in the low heating value by approximately 1.7% (Figure 5).Energies 2019, 12, x FOR PEER REVIEW 8 of 15 
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Figure 5. Dependence of the LHV of cherry stone granules on the content of rye bran.

The decrease in the LHV results from the fact that cherry stones have about a 3.5 MJ·kg−1 higher
calorific value than rye bran. Zając and Szyszlak-Bargłowicz [12], using the addition of rye bran
for safflower mallow, also observed a slight decrease in the calorific value of the produced pellets.
Obidziński et al. [32], using an addition from 5% to 25% of rye bran to sawdust, also obtained granules
whose calorific value decreased with increasing rye bran content.

3.2. Pressure Agglomeration Process

Figure 6 shows the influence of process factors (rotational speed of the matrix) and materials
(rye bran content) on the kinetic durability of granules obtained from cherry stones.

The obtained results (Figure 6) allow us to state that increasing the amount of rye bran from
10% to 20% in a mixture with cherry stones increases the granule kinetic durability at each of the
rotational speeds of the granulator’s matrix. For example, at 170 rpm, the kinetic durability of pellets
increased from 57.13% (with 10% rye bran) to 87.57% (with 20% rye bran). The binding properties
of rye bran were also previously confirmed [32], where it was used as an additive to sawdust and
improved the kinetic durability of the fuel pellet. Rye bran was also used by Szyszlak-Bargłowicz and
co-workers [33] in a mix with Virginia mallow to improve the course of the pelleting process. Chou and
coworkers [53,54] carried out agglomeration of rice straw and rice bran in the piston-matrix system
and found that with the increase of rice bran in the thickened mixture, the strength of the briquettes
increased. The majority of standards for wood pellets, produced industrially, determines the kinetic
durability as not less than 97.5%.
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Figure 6. The impact of rye bran and rotational speed of the matrix on the kinetic durability of cherry
stone granules.

Increasing the rotation speed of the granulator matrix resulted in a decrease in the kinetic durability
of pellets. The decrease was most visible for pellets with 10% rye bran content, in other words, kinetic
durability at 270 rpm was only 33.83%, and at 170 rpm it was 57.13%. This is related to the high
fat content in the endosperm of cherries [19] (lowering the content of bran in the mixture causes an
increase in the total fat) and a decrease in thickening pressures as the rotational speed increases [6,55].

There were attempts to agglomerate cherry stones without using rye bran, however, the kinetic
strength of the obtained products was very low (below 20%) which would prevent the transport of
granules and their use in installations with an automatic dispenser. For this reason, only the mixture
containing 20% rye bran was subjected to the combustion process.

The bulk density of the obtained pellets was approximately 470 kg·m−3 and was similar to the
bulk density of whole cherry stones.

Figure 7 shows the influence of process factors (rotational speed of the matrix) and materials
(rye bran content) on the physical density of the granules obtained from cherry stones.
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On the basis of the obtained test results (Figure 7), it was found that increasing the content
of rye bran from 10% to 20% in a mixture with cherry stones increased the physical density of the
obtained pellets at each of the rotational speeds of the granulator’s matrix. The highest physical
density (829.51 kg·m−3) was obtained from granulated cherry stones obtained with a 20% rye bran
fraction, with the rotational speed of the matrix equal to 170 rpm. The addition of rye bran significantly
influenced the increase in the density of the obtained granules. Similar observations are described in
a previous work [32], where the addition of rye bran to sawdust produced pellets of higher density.
Miranda et al. [56] thickened the olive pulp waste resulting from oil production, and they found that
in order to achieve high granule quality (high kinetic durability and physical density), the high fat
material should be mixed with other low fat waste.

An increase in the rotational speed of the die from 170 to 270 rpm resulted in a slight decrease in
the density of pellets, with the highest difference (about 4%) recorded at a 10% addition of rye bran in
the compacted mixture. High fat content in cherry stones [57] improves the lubricating properties of
the compacted mixture and reduces the friction between the material and the walls of the die holes,
which results in a decrease in thickening pressures and a decrease in product density.

Figure 8 shows the influence of process factors (rotational speed of the matrix) and materials
(rye bran content) on the demand for granulator power during the manufacture of cherry stone granules.
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Figure 8. Influence of rye bran and rotational speed of the matrix on the granulator demand for power
during the production of granulated cherry stones.

The research (Figure 8) shows that the increase in the amount of bran from 10% to 20% in the
agglomerated mixture affects the increase of the granulator’s demand for power to a small extent.
For example, the increase in the amount of bran from 10% to 20%, at the matrix rotational speed of
270 rpm, resulted in a increase in the pellet demand for power from 1.16 to 1.21 kW.

It should be noted that in the case of ground fruit seeds, in the granulator’s working system
(between the rolls and the matrix), besides the process of molding the material into the matrix holes,
the larger particles of the seed shell were also crushed [58]. The addition of rye bran caused an increase
of the demand for the granulator’s power due to the increase of the material’s frictional force with the
matrix (lower content of fat containing endosperm in the mixture). According to Obidziński et al. [32]
and Buksa [59], rye bran contains arabinoxylans that form solutions of high viscosity in water, which in
the compaction processes increase the compaction susceptibility of the mixture and thus create granules
with high kinetic durability at reduced energy expenditure.

The highest values of the power granulator’s demand were obtained at the matrix rotational
speed of the 270 rpm and ranged from 1.16 kW (for a mixture containing 10% bran) to 1.21 kW (for a
mixture containing 20% bran).
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3.3. Combustion

Pellets with the highest obtained kinetic strength (80% cherry pits and 20% rye bran) were used
for the combustion process due to the automatic fuel dosing system to the boiler. Granules containing
10% and 15% rye bran would crumble in the dispenser, causing operational problems of the installation.
Table 2 presents the average results obtained during the combustion of cherry stone granules with a
20% addition of rye bran and cherry stones in the form in which they left the processing plant.

Table 2. Flue gas composition and conditions of combustion of cherry stones with 20% rye bran and
cherry stones without any preparation.

Parameter
Value

Pellets Cherry Stones

CO2 (%) 7.20 7.76
CO (mg·Nm−3) 432.45 745.91
SO2 (mg·Nm−3) 38.62 56.29
NO (mg·Nm−3) 264.69 356.44
HCl (mg·Nm−3) 4.38 8.99

The actual oxygen concentration in the exhaust (%) 10.96 14.19
λ 2.04 2.94

Average flue gas temperature in the boiler outlet (◦C) 170 160

In Table 2 the actual average proportion of oxygen in the exhaust gas is given, based on which
the air excess ratio λwas calculated. The difference in the coefficient λ for fuel in the form of pellets
and whole cherry stones is clearly visible, which confirms the pellet’s advantageous use in low-power
boilers with a retort grate. According to Pudlik [60], λ depends on the type of fuel and the device in
which it is incinerated, and in the case of waste it can reach values of 2–2.5. Particular attention is
paid in the combustion processes to the contribution of CO in the exhaust gas as an indicator of the
presence of soot, hydrocarbons, dioxins, and furans [61]. The maximum CO content in the flue gas for
boilers with a heating capacity <0.5 MW is determined by the Ecodesign directive and amounts to
a maximum of 500 mg·m−3 when feeding with automatic biomass fuel, which was also a condition
of [62] for 5-class boilers.

Kordylewski and Mościcki [63] indicate that when combusting agro-type biomass in retort
burners, increasing the excess air ratio λ may result in increased CO emission in the exhaust gas.
Mustafa and co-workers [64] report that in addition to the high coefficient λ, the CO emission can
be affected by the combustion temperature, since at higher temperatures the amount of CO should
be lower.

According to Ravichandran and Corscadden [65], the emission of sulfur oxides depends primarily
on the sulfur content in the fuel to be burned. Certified wood pellets burned in the same installation
generated a sulfur dioxide emission of approximately 23 mg·m−3. The Ecodesing directive will limit
the emission of NO to <200 mg·m−3. Cherry stone pellets did not achieve the level of nitrogen
oxide emissions required by the Ecodesing directive. Wielgosiński and colleagues [66] observed
a decrease in NO emissions due to an increase in the combustion temperature and lower air flow,
which according to the authors is a result of changes in the course of NO synthesis under these
conditions. This may be confirmed by the results obtained in the experiment for the whole stones and
for the pellets. In the examined biomass burning conditions, the main source of nitrogen oxides is
nitrogen contained in the fuel, due to the combustion temperatures below 1300◦C. As a part of this
research, using the K thermocouple, the temperature in the furnace was examined while burning
granulated cherry stones with the addition of rye bran, and the temperature was approximately 730 ◦C.
It is assumed, therefore, that Zeldowicz’s reaction does not take place and that due to the high λ
coefficient there are no so-called processes, in other words, prompt NO-atmospheric combustion of N2

and hydrocarbons in a rich mix [67]. Williams and co-workers [68] suggest controlling nitrogen oxide
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emissions through stoichiometric control, which mainly concerns the compounds released during
combustion of volatile fuels.

Chlorine contained in the biomass during most of the combustion is released in the form of
hydrogen chloride HCl, which can further react with other exhaust components, resulting in the
production of dioxins [69]. In this experiment, the hydrogen chloride content was twice as high
for the combustion of whole cherry stones than for that of the cherry stones and rye bran pellets.
Król [70] on the basis of German standards gives an acceptable limit for HCl emissions as <5 mg·m−3,
which was fulfilled in the case of pellets. As reported by Liu et al. [71], biomass with a high chlorine
content is an undesirable fuel, although it can also bring some benefits, such as oxidation of mercury,
and thus facilitate its capture and control. According to Szczepaniak [72], this phenomenon occurs
at temperatures below 427 ◦C, at higher temperatures the importance of chlorine in the binding of
mercury is marginal.

4. Conclusions

The compaction process (pressure agglomeration), its efficiency, energy consumption, and the
quality of the product obtained, are closely related to material, apparatus, and process factors.

The overriding objective of creating fuel pellets from agri-food waste is the management of
production residues, which allows for the reduction of costs of their utilization due to their use in
energy systems.

Cherry stones are a material with high calorific value and low nitrogen, sulfur, and chlorine
content, for which reason they might be used as an alternative solid fuel. Due to the high fat content
of cherry stones, a product with low kinetic durability is obtained as a result of their agglomeration
without additives. This prevents its transport and application in automatic fuel feeding systems.
The use of binder in the form of rye bran for agglomeration of cherry stones has the effect of increasing
the kinetic durability of pellets and at the same time slightly reducing their low heating value (LHV).
An increase in rye bran content from 10% to 20% resulted in a decrease in the LHV by approximately
0.3 MJ·kg−1, while the increase in the kinetic durability was up to 40%. In connection with the above,
the pellet was evaluated with the addition of 20% rye bran as the highest quality product among
those tested.

An important environmental aspect of waste utilization in direct combustion processes is their
emissivity. Through the use of cherry pellets, in comparison to whole stones, almost two times the
reduction of carbon monoxide emissions was achieved (while maintaining the same thermal and
flow conditions of the boiler system) and the emissions of sulfur dioxide, nitric oxide, and hydrogen
chloride were also reduced. The calculated excess air coefficient λ indicates a better contact of the
combustible particle with the oxidizing agent when using pellets for the combustion process than
when using whole cherry stones. Hence, these results motivate future investigations to reuse the cherry
stones for producing alternative biofuels that might be used for heat and/or electricity production,
either in domestic or in industrial plants.
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biomasy ślazowca pensylwańskiego=The influence of rye bran additive on energy properties of pellets from
syllab of Columbian mallow. Autobusy Tech. Eksploat. Syst. Transp. 2011, 10, 459–464.

14. Wattana, W.; Phethlung, S.; Jakaew, W.; Chumuthai, S.; Sriam, P.; Chanurai, N. Characterization of mixed
biomass pellet from oil palm and para-rubber tree residues. Energy Procedia 2017, 138, 1128–1133. [CrossRef]

15. Wongsiriamnuay, T.; Tippayawong, N. Effect of densification parameters on the properties of maize residue
pellets. Biosyst. Eng. 2015, 139, 111–120. [CrossRef]

16. Mami, M.A.; Mätzing, H.; Gehrmann, H.-J.; Stapf, D.; Bolduan, R.; Lajili, M. Investigation of the Olive Mill
Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor. Energies 2018, 11, 1965. [CrossRef]

17. Maj, G.; Kuranc, A. Technologie produkcji oraz systemy certyfikacji jakości peletów z biomasy roślinnej.
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42. Obidziński, S.; Hejft, R. Influence of technical and technological factors of the fodders pelleting process on

the quality of obtained product. J. Res. Appl. Agric. Eng. 2012, 57, 94–99.
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