Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness and Limitations of the Raman Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects
2.2. Raman Microspectroscopy
3. Effectiveness, Limitations and Practical Utility of Raman Analysis
4. Technological Evolution of Enameling: A Brief Overview
5. Results and Discussion
5.1. Fluorescence Contribution in the 20th Century Pigments
5.2. 20th Century Pigments
5.3. 19th Century Pigments
5.4. 18th Century Pigments
6. Conclusions
- -
- Naples yellows with complex composition (addition of Sb, Zn, etc.) from (the end of) the 17th century.
- -
- Opacification with arsenic from the end of the 17th century.
- -
- The highlighting of pigments based on chromium oxide is typical of the 19th century (e.g., Victoria green and sphene pink).
- -
- Pigments of various colors using zircon, cassiterite and rutile as a pigment matrix and CdS-CdSe are typical of the years after 1960.
- -
- The very intense fluorescence of a red to orange enamel is characteristic of coloration with nanoparticles, copper (Cu°) or gold (Au°) or the solid solution of CdS-CdSe, which was tested in the early 20th century as a colorant for glasses, although created at the end of the 19th century for paint pigments. In fact, it was only used at large scale in the first quarter of the 20th century for glass (stained glass windows) [41,42] and after 1950 for enamels [39].
- -
- Strong ‘broadband’ fluorescence contributions are observed for some enamels prepared from natural raw materials while those obtained from purified reagents show fluorescence-free spectra. It is an index of ingredients prepared between ~1850 and 1960.
- -
- Narrow luminescence peaks are frequent for enamels/glazes prepared in the second half of the 20th century, containing rare earths deliberately added or resulting from pollution by grinding agents.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colomban, P.; Treppoz, F. Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy. J. Raman Spectrosc. 2001, 32, 93–102. [Google Scholar] [CrossRef]
- Colomban, P.; Sagon, G.; Faurel, X. Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J. Raman Spectrosc. 2001, 32, 351–360. [Google Scholar] [CrossRef]
- Colomban, P.; Robert, I.; Roche, C.; Sagon, G.; Milande, V. Identification des porcelaines “tendres” du 18ème siècle par spectroscopie Raman: Saint-Cloud, Chantilly, Mennecy et Vincennes/Sèvres. Rev. d’Archéomètrie 2004, 28, 153–167. Available online: https://www.persee.fr/doc/arsci_0399-1237_2004_num_28_1_1070 (accessed on 22 April 2022).
- Colomban, P.; Milande, V.; Le Bihan, L. On-site Raman analysis of Iznik pottery glazes and pigments. J. Raman Spectrosc. 2004, 35, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P.; Milande, V. On-site Raman analysis of the earliest known Meissen porcelain and stoneware. J. Raman Spectrosc. 2006, 37, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Vandenabeele, P.; Edwards, H.G.M.; Moens, L. A Decade of Raman Spectroscopy in Art and Archaeology. Chem. Rev. 2007, 107, 675–686. [Google Scholar] [CrossRef]
- Colomban, P. The on-site/remote Raman analysis with mobile instruments: A review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 2012, 43, 1529–1535. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Edwards, H.G.M.; Jehlicka, J. The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chem. Soc. Rev. 2014, 43, 2628–2649. Available online: https://pubs.rsc.org/en/content/articlelanding/2014/cs/c3cs60263j (accessed on 24 April 2022). [CrossRef]
- Madariaga, J.M. Analytical Methods in the field of cultural heritage. Anal. Methods 2015, 7, 4848. [Google Scholar] [CrossRef]
- Colomban, P. On-site Raman study of artwork: Procedure and illustrative examples. J. Raman Spectrosc. 2018, 49, 921–934. [Google Scholar] [CrossRef]
- Janssens, K.H.A. (Ed.) Modern Methods for Analysing Archaeological and Historical Glass, 1st ed.; John Wiley & Sons: Chichester, UK, 2013; Volume 2, Available online: https://www.wiley.com/en-us/Modern+Methods+for+Analysing+Archaeological+and+Historical+Glass-p-9780470516140 (accessed on 24 April 2022).
- Edwards, H.G.M. Porcelain Analysis and Its Role in the Forensic Attribution of Ceramic Specimens; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Pezzotti, G. In situ study of fracture mechanisms in advanced ceramics using fluorescence and Raman microprobe spectroscopy. J. Raman Spectrosc. 1999, 30, 867–875. [Google Scholar] [CrossRef]
- Long, D. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules; John Wiley & Sons: Hooken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B.; Gougeon, C.; Gironda, M.; Cardinal, C. Pigments and glassy matrix of the 17th-18th century enamelled French watches: A non-invasive on-site Raman and pXRF study. J. Cult. Herit. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Colomban, P. The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure. J. Nano Res. 2009, 8, 109–132. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P. (The destructive/non-destructive identification of enamelled pottery and glass artifacts and associated pigments—A brief overview. Arts 2013, 2, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P. Glazes and Enamels. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 2020; Chapter 10.6; Available online: https://www.wiley.com/en-us/Encyclopedia+of+Glass+Science%2C+Technology%2C+History%2C+and+Culture%2C+2+Volume+Set-p-9781118799499 (accessed on 24 April 2022).
- Colomban, P. Glass, Pottery and enamelled objects: Identification of their technology and origin. In Conservation Science—Heritage Materials; Garside, P., Richarson, E., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2019; Chapter 7; pp. 200–247. Available online: https://pubs.rsc.org/en/content/ebook/978-1-78801-093-1 (accessed on 24 April 2022).
- Colomban, P. Natural nanosized raw materials and Sol-Gel technology: The base of pottery since millenniums. In Nanosciences and Cultural Heritage; Dillmann, P., Bellot-Gurlet, L., Nenner, I., Eds.; Atlantis Press: Paris, France, 2016; pp. 59–74. Available online: https://www.springerprofessional.de/en/natural-nanosized-raw-materials-and-sol-gel-technology-the-base-/10197152 (accessed on 24 April 2022).
- Colomban, P.; Lu, T.-A.; Milande, V. Non-invasive on-site Raman study of blue-decorated early soft-paste porcelain: The use of arsenic-rich [European] cobalt ores—Comparison with huafalang Chinese porcelains. Ceram. Int. 2018, 44, 9018–9026. [Google Scholar] [CrossRef]
- Colomban, P.; Kirmizi, B.; Clais, J.-B.; Gironda, M. An on-site Raman and pXRF study of Joseph Coteau and Philippe Parpette’s jewelled porcelain: A summit of ceramic art. J. Cult. Herit. 2020, 46, 82–94. [Google Scholar] [CrossRef]
- Colomban, P.; Ngo, A.-T.; Fournery, N. Non-invasive Raman analysis of 18th Century Chinese export/armorial overglazed porcelain: Identification of the different enameling techniques. Heritage 2022, 5, 13. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B.; Zhao, B.; Clais, J.-B.; Yang, Y.; Droguet, V. Investigation of the Pigments and Glassy Matrix of Painted Enamelled Qing Dynasty Chinese Porcelains by Noninvasive On-Site Raman Microspectrometry. Heritage 2020, 3, 50. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B.; Zhao, B.; Clais, J.-B.; Yang, Y.; Droguet, V. Non-invasive on-site Raman study of pigments and glassy matrix of the 17th–18th century painted enamelled Chinese metal wares: Comparison with French enamelling technology. Coatings 2020, 10, 471. [Google Scholar] [CrossRef]
- Colomban, P.; Gironda, M.; Vangu, D.; Kırmızı, B.; Zhao, B.; Cochet, V. The technology transfer from Europe to China in the 17th–18th centuries: Non-invasive on-site XRF and Raman analyses of Chinese Qing Dynasty enameled masterpieces made using European ingredients/recipes. Materials 2021, 14, 7434. [Google Scholar] [CrossRef]
- Kırmızı, B.; Colomban, P.; Blanc, M. On-site analysis of Limoges enamels from sixteenth to nineteenth centuries: An attempt to differentiate etween genuine artefacts and copies. J. Raman Spectrosc. 2010, 41, 1240–1247. [Google Scholar] [CrossRef]
- Faurel, X.; Vanderperre, A.; Colomban, P. Pink pigment optimization y resonance Raman spectroscopy. J. Raman Spectrosc. 2003, 34, 290–294. [Google Scholar] [CrossRef]
- d’Albis, A. Traité de la Porcelaine de Sèvres; Faton: Dijon, France, 2003. [Google Scholar]
- Colomban, P. Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Appl. Phys. A 2004, 79, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P. Non-destructive Raman analysis of ancient glasses and glazes. In Modern Methods for Analysing Archaeological and Historical Glass, 1st ed.; Janssens, K., Ed.; John Wiley and Sons Ltd.: London, UK, 2012; pp. 275–300. [Google Scholar]
- Colomban, P.; Paulsen, O. Non-destructive Raman Determination of the Structure and Composition of Glazes by Raman Spectroscopy. J. Amer. Ceram. Soc. 2005, 88, 390–395. [Google Scholar] [CrossRef]
- Colomban, P. Polymerization degree and Raman identification of ancient glasses used for jewellery, ceramic enamels and mosaics. J. Non-Crystall. Solids 2003, 323, 180–187. [Google Scholar] [CrossRef]
- Mysen, O.; Finger, L.W.; Virgo, D.; Seifert, F.A. Curve-Fitting of Raman Spectra of Silicate Glass. Am. Mineral. 1982, 67, 696–697. [Google Scholar]
- MacMillan, P.F.; Piriou, P. Raman Spectroscopic Studies of Silicate and Related Glass Structure—A Review. Bull. Mineral. 1983, 106, 57–75. [Google Scholar] [CrossRef]
- Galeener, F.L. Band limits and the vibrational spectra of tetrahedral glasses. Phys. Rev. B 1979, 19, 4292–4297. [Google Scholar] [CrossRef]
- Colomban, P.; Slodczyk, A. Raman Intensity: An important tool to study the structure and phase transitions of amorphous/crystalline materials. Opt. Mater. 2009, 31, 1759–1763. [Google Scholar] [CrossRef]
- Gouadec, G.; Colomban, P. Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progr. Cryst. Growth Charact. Mater. 2007, 53, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Eppler, R.A.; Eppler, D.R. Glazes and Glass Coatings; The American Ceramic Society: Westerville, OH, USA, 2000. [Google Scholar]
- Fraser, H. Glazes for the Craft Potter; Revised Edition; A&C Black: London, UK; The American Ceramic Society: Westerville, OH, USA, 1999. [Google Scholar]
- Fornacelli, C.; Sciau, P.; Colomban, P. CdSxSe1−x quantum dots as colouring agents of Art Nouveau and contemporary stained glass: A combined transmission electron microscopy and Raman study. Philos. Trans. R. Soc. A 2016, 374, 20160045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornacelli, C.; Colomban, P.; Turanti Memmi, I. Toward a Raman/FORS discrimination etween Art Nouveau and contemporary stained glasses from CdSxSe1-x nanoparticles signatures. J. Raman Spectrosc. 2015, 46, 1129–1139. [Google Scholar] [CrossRef]
- Colomban, P.; Milande, V.; Lucas, H. On-site Raman analysis of Medici porcelain. J. Raman Spectrosc. 2004, 35, 68–72. [Google Scholar] [CrossRef]
- Trittschak, R.; Maggetti, M.; d’Albis, A.; Kozlowski, G. Analyse d’une assiette peinte par Jean-Jacques Pierre le Jeune à Sèvres en 1781. Keram.-Freunde Schweiz 2015, 129, 50–62. Available online: https://www.e-periodica.ch/digbib/view?pid=kkf-002%3A2015%3A0#5 (accessed on 22 April 2022).
- De Lucas, M.C.M.; Moncada, F.; Rosen, J. Micro-Raman study of red decorations in French faiences of the 18th and 19th centuries. J. Raman Spectrosc. 2006, 37, 1154–1159. [Google Scholar] [CrossRef]
- Deck, T. La Faïence; Maison Quantin: Paris, France, 1887. [Google Scholar]
- Bertran, H. Nouveau Manuel Complet de la Peinture sur Verre, sur Porcelaine et Sur Email; Mulo, L., Ed.; Encyclopédie-Roret: Paris, France, 1913. [Google Scholar]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Colomban, P. Lapis lazuli as unexpected lue pigment in iranian Lâjvardina ceramics. J. Raman Spectrosc. 2003, 34, 420–423. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Colomban, P.; Valotteau, C.; Mangone, A.; Camon, P. Moile Raman spectroscopy analysis of ancient enamelled glass masterpieces. Anal. Meth. 2013, 5, 17. [Google Scholar] [CrossRef]
- Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [Google Scholar] [CrossRef]
- Pinto, A.; Groenen, J.; Zhao, B.; Zhu, T.; Sciau, P. Chromogenic mechanisms in blue-and-white porcelain. J. Eur. Ceram. Soc. 2020, 40, 6181–6187. [Google Scholar] [CrossRef]
- Pinto, A.; Sciau, P.; Zhu, T.; Zhao, B.; Groenen, J. Raman study of Ming porcelain dark spots: Probing Mn-rich spinels. J. Raman Spectrosc. 2019, 50, 711–719. [Google Scholar] [CrossRef]
- Colomban, P. On-site Raman identification and dating of ancient glasses: A review of procedures and tools. J. Cult. Herit. 2008, 9, e55–e60. [Google Scholar] [CrossRef]
- Michel, D.; Colomban, P.; Abolhassani, S.; Voyron, F.; Kahn-Harari, A. Germanium mullite: Structure and virational spectra of gels, glasses and ceramics. J. Eur. Ceram. Soc. 1996, 16, 161–168. [Google Scholar] [CrossRef]
- Lenz, C.; Talla, D.; Ruschel, K.; Skoda, R.; Gotze, J.; Nasdala, L. Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineral. Petrol. 2013, 107, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyssac, O. New Trends in Raman Spectroscopy: From High-Resolution Geochemistry to Planetary Exploration. Elements 2020, 16, 117–122. [Google Scholar] [CrossRef]
- Ruvalcaba Cornejo, C. Luminescence in Rare Earth Ion-doped oxide compounds. In Luminescence—An Outlook on the Phenomena and Their Applications; Thirumalai, J., Ed.; IntechOpen Book Series; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/chapters/52672 (accessed on 20 January 2022).
- Dieke, G.H. Spectra and Energy Levels of Rare Earth Ions in Crystals; Wiley Interscience: New York, NY, USA, 1968. [Google Scholar]
- Colomban, P. Raman Spectrometry, A unique tool for on-site analysis and identification of ancient ceramics and glasses. Mater. Res. Soc. Symp. Proc. 2005, 852, OO8.3.1. [Google Scholar] [CrossRef] [Green Version]
- Kamura, S.; Tani, T.; Matsuo, H.; Onaka, Y.; Fujisawa, T.; Unno, M. New proe for porcelain glazes y luminescence at Near-Infrared excitation. ACS Omega 2021, 6, 7829–7833. [Google Scholar] [CrossRef]
- Colomban, P.; Kırmızı, B. Non-invasive on-site Raman study of polychrome and white enamelled glass artefacts in imitation of porcelain assigned to Bernard Perrot and his followers. J. Raman Spectrosc. 2020, 51, 133–146. [Google Scholar] [CrossRef]
- Cvejic, Z.; Rakic, S.; Kremenovic, A.; Antic, B.; Jovalekic, C.; Colomban, P. Nanosize ferrites obtained y all milling: Crystal structure, cation distribution, size-strain analysis and Raman investigations. Sol. State Sci. 2006, 8, 908–915. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G.; Kirmizi, B. Cobalt and Associated Impurities in Blue (and Green) Glass, Glaze and Enamel: Relationships between Raw Materials, Processing, Composition, Phases and International Trade. Minerals 2021, 11, 633. [Google Scholar] [CrossRef]
- Bouchard, M.; Gamardella, P. Raman microscopy study of synthetic coalt blue spinels used in the field of art. J. Raman Spectrosc. 2010, 41, 1477–1485. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Colomban, P. Raman identification of strongly absoring phases: The ceramic black pigments. J. Raman Spectrosc. 2011, 42, 839–843. [Google Scholar] [CrossRef]
- Prinsloo, L.C.; Colomban, P. A Raman spectroscopic study of the Mapunguwe oblates: Glass trade eads excavated at an Iron Age archaeological site in South Africa. J. Raman Spectrosc. 2008, 39, 79–90. [Google Scholar] [CrossRef]
- Griffith, W.P. Raman Spectroscopy of Terrestrial Minerals in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals; Karr, C., Jr., Ed.; Academic Press, Inc.: New York, NY, USA, 1975; pp. 299–320. [Google Scholar]
- Colomban, P.; Maggetti, M.; d’Albis, A. Non-invasive identification of crystalline and glassy phases in a 1781 Sèvres Royal Factory soft paste porcelain plate. J. Eur. Ceram. Soc. 2018, 38, 5228–5233. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Ferro, M.C.; Gaspar, G.; Fernandes, A.J.S.; Valente, M.A.; Costa, F.M. Laser-induced Hematite/Magnetite Phase Transformation. J. Electron. Mater. 2020, 49, 7187–7193. [Google Scholar] [CrossRef]
- Oliveira, A.C.; da Silva, A.N.; Junior, J.A.L.; Freire, P.T.C.; Oliveira, A.C.; Filho, J.M. Structural changes in nanostructured catalytic oxides monitored by Raman spectroscopy: Effect of the laser heating. J. Phys. Chem. Solids 2017, 102, 90–98. [Google Scholar] [CrossRef]
- Van Pevenage, J.; Lauwers, D.; Herremans, D.; Verhaeven, E.; Vekemans, B.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P. A Combined Spectroscopic Study on Chinese Porcelain Containing Ruan-Cai Colours. Anal. Methods 2014, 6, 387–394. [Google Scholar] [CrossRef]
- Montanari, R.; Alberghina, M.F.; Casanova Municchia, A.; Massa, E.; Pelagotti, A.; Pelosi, C.; Schiavone, S.; Sodo, A. A polychrome Mukozuke (1624–1644) porcelain offers a new hypothesis on the introduction of European enameling technology in Japan. J. Cult. Herit. 2018, 32, 232–237. [Google Scholar] [CrossRef]
- Montanari, R.; Murakami, N.; Alberghina, M.F.; Pelosi, C.; Schiavone, S. The Origin of overglaze-blue enameling in Japan: New discoveries and a reassessment. J. Cult. Herit. 2019, 37, 94–102. [Google Scholar] [CrossRef]
- Sakellariou, K.; Miliani, C.; Morresi, A.; Ombelli, M. Spectroscopic investigation of yellow majolica glazes. J. Raman Spectrosc. 2004, 35, 61–67. [Google Scholar] [CrossRef]
- Sandalinas, C.; Ruiz-Moreno, S. Lead-tin-antimony yellow-Historical manufacture, molecular characterization and identification in seventeenth-century Italian paintings. Stud. Conserv. 2004, 49, 41–52. [Google Scholar] [CrossRef]
- Sandalinas, C.; Ruiz-Moreno, S.; Lopez-Gil, A.; Miralles, J. Experimental confirmation by Raman spectroscopy of a Pb-Sn-Sb triple oxide yellow pigment in sixteenth-century Italian pottery. J. Raman Spectrosc. 2006, 37, 1146–1153. [Google Scholar] [CrossRef]
- Rosi, F.; Manuali, V.; Miliani, C.; Brunetti, B.G.; Sgamellotti, A.; Grygar, T.; Hradil, D. Raman scattering features of lead pyroantimonate compounds. Part I: XRD and Raman characterization of Pb2Sb2O7 doped with tin and zinc. J. Raman Spectrosc. 2009, 40, 107–111. [Google Scholar] [CrossRef]
- Ricciardi, P.; Colomban, P.; Tournié, A.; Milande, V. Non-destructive on-site identification of ancient glasses: Genuine artefacts, embellished pieces or forgeries? J. Raman Spectrosc. 2009, 40, 604–617. [Google Scholar] [CrossRef]
- Pereira, M.; de Lacerda-Aroso, T.; Gomes, M.J.M.; Mata, A.; Alves, L.C.; Colomban, P.H. Ancient Portuguese ceramic wall tiles (“Azulejos”): Characterization of the glaze and ceramic pigments. J. Nano Res. 2009, 8, 79–88. [Google Scholar] [CrossRef]
- Pelosi, C.; Agresti, G.; Santamaria, U.; Mattei, E. Artificial yellow pigments: Production and characterization through spectroscopic methods of analysis. e-Preserv. Sci. 2010, 7, 108–115. [Google Scholar]
- Rosi, F.; Manuali, V.; Grygar, T.; Bezdicka, P.; Brunetti, B.G.; Sgamellotti, A.; Burgio, L.; Seccaroni, C.; Miliani, C. Raman scattering features of lead pyroantimonate compounds: Implication for the non-invasive identification of yellow pigments on ancient ceramics. Part II. In situcharacterisation of Renaissance plates by portable micro-Raman and XRF studies. J. Raman Spectrosc. 2011, 42, 407–414. [Google Scholar] [CrossRef]
- Cartechini, L.; Rosi, F.; Miliani, C.; D’Acapito, F.; Brunetti, B.G.; Sgamellotti, A. Modified Naples yellow in Renaissance majolica: Study of Pb-Sb-Zn and Pb-Sb-Fe ternary pyroantimonates by X-ray absorption spectroscopy. J. Anal. At. Spectrom. 2011, 26, 2500–2507. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, X.; Kang, B.; Wang, G.; Qu, L.; Lei, Y. Non-destructive analysis and deterioration study of a decorated Famille rose porcelain owl of Qianlong reign from the foridden city. Stud. Conserv. 2019, 64, 311–322. [Google Scholar] [CrossRef]
- Norris, D.; Braeksman, D.; Shortland, A.J. Technological connections in the development of 18th and 19th century Chinese painted enamels. J. Archaeol. Sci. Rep. 2022, 42, 103406. [Google Scholar] [CrossRef]
- Giannini, R.; Freestone, I.C.; Shortland, A.J. European cobalt sources identified in the production of Chinese Famille rose porcelain. J. Archaeol. Sci. 2017, 80, 27–36. [Google Scholar] [CrossRef] [Green Version]
Period | Origin | Artifact | Type | References | This Work |
---|---|---|---|---|---|
18th century | Vincennes (France) | Palette cup | porcelain | [21] | |
Sèvres (France) | Coffee cup | porcelain | [21] | ||
Comte d’Artois factory(France) | Vase | porcelain | [22] | ||
China | Dish | porcelain | [23] | X | |
China | Dish | porcelain | [23] | X | |
China | Tea pot | porcelain | [24] | ||
China | Bottle | porcelain | [24] | ||
Swiss | Watch | gold | [15] | ||
France | Watch | gold | [15] | X | |
China | Ewer | gold | [25,26] | ||
France | Figure | glass | - | X | |
19th century | Sèvres (France) | Palette | porcelain | [2] | |
Sèvres (France) | Ewer | metal | [27] | ||
Sèvres (France) | Palette | porcelain | [2] | ||
Nevers (France) | Cup | Faience | - | X | |
Satsuma (Japon) | Vase | porcelain | - | X | |
China | Pendant | metal | - | X | |
U.K. (Cobridge) | Tea cup saucer | faience | - | X | |
Germany | Figure (peddler) | porcelain | - | X | |
20th century | Sèvres (France) | Vase | porcelain | [28] | |
Sèvres (France) | Palette | porcelain | [2] | ||
China | Dish | porcelain | - | X | |
Rosenthal studio line (Germany) | Coffee cup saucers (Cupola nr30) | porcelain | - | X | |
Coffee cup saucers(Suomi Jahretasse 1999) | porcelain | - | X | ||
Coffee cup saucers(Salome nr17) | porcelain | - | X | ||
Coffee cup saucers(O. Alt nr7) | porcelain | - | X | ||
Japan | Sake cup (black) | porcelain | - | X | |
Vietnam | Vase | porcelain | - | X | |
China | Figure (Buddha)) | porcelain | - | X |
Color | Structural Type | Formula 1 | Main Raman Peaks 3/cm−1 | Period of Use/Century |
---|---|---|---|---|
Opacifier(white) | Cassiterite 2 | SnO2 | 635–775 | Roman |
Baddaleyite | ZrO2 | 180–190 | 20th | |
Zirconia (stabilized) | ZrO2:Ca,Mg | 265 | 20th | |
Apatite | (Na,K,Ca)1Pb4(AsO4)3 | 815 | <18th | |
Rutile 2 | TiO2 | 445–610 | 20th | |
Zircon | ZrSiO4 | 1009 | 20th | |
Whitlockite | Ca3(PO4)2 | 965 | <17th | |
Wollastonite | CaSiO4 | 635–970 | 18th | |
Fluorite | CaF2 | 320 | Medieval | |
CaSb2O6 | 671 | Roman | ||
CaSb2O7 | 482–633 | Roman | ||
Yellow | Pyrochlore | Pb2(Sb,Sn,Fe,Si)12O7-δ | 130 to 140 | Renaissance |
Pb(Sn,Fe,Si)1O4 | 130 to 140 | Antiquity | ||
Zircon | (Zr,V)1SiO4 | 1009 | >1960 | |
Zircon | (Zr,Pr)1SiO4 | 1009 | >1960 | |
Baddeleyite | (Zr,V)O2 | 180–190 | 20th | |
Rutile | (Ti,Ni,S)1O2 | 445–610 | 20th | |
Cassiterite | (Sn,V)O2 | 635–775 | 20th | |
Wurtzite | CdS | 275 | 20th | |
PbUO4 | circa 830 | 19th | ||
Sphene | CaSnSiO5 | 580 | 20th | |
ZnCrO4 | 840 | >~1850 | ||
Blue | Hauyne, lazurite 4 | Na8(Al6Si6O24)Sn | 542–1090 | Antiquity |
Zeolite | Na8(Al8Si8O32)Sn | 19th | ||
Olivine | Co2SiO4 | 810–830 | 18th | |
Phenacite | (Co,Zn)12SiO4 | 19th | ||
Spinel | CoAl2O4 | 690 | End of 18th | |
Spinel | (Co,Zn)1Al2O4 | 690 | 19th | |
Zircon | (Zr,V)1SiO4 | 1009 | >1950 | |
BaMnO4 | ? | 20th | ||
Green | Yellow pigment in blue matrix | See above | 18th | |
Garnet | 3CaO.Cr2O3.3SiO2 | ~750 | data | |
Olivine | Ni2SiO4 | ~850 | 20th | |
Corundum | Cr2O3 | ~540 | 19th | |
Spinel | Co(Cr,Ti)12O4 | 700–800 | 19th | |
Red | Corundum 2,4 | (Fe,Al,X)12O3 | 200–300 | Antiquity |
Wurtzite | CdSe | 190 | 20th | |
Wurtzite | Cd(S,Se)1 | 190–275 | 20th | |
metal | Au° | - | 17th | |
metal | Cu° | - | Roman | |
Pink | Sphene | CaO.SnO2.SiO2:Cr | 750–940 | 19th |
Corundum | (Al,Mn)12O3 | ~420–750 | 20th | |
Blue | Spinel | Zn(Al,Cr)2O4 | 630–850 | <18th |
Zircon | (Zr,Fe)1SiO4 | 1009 | 20th | |
Gray | Cassiterite 2 | (Sn,Sb)1O2 | 635–775 | 20th |
Brown | Spinel | Fe2TiO4 | 650–700 | 20th |
Spinel | (Zn,Ni,Fe)1FeO4 | 650–700 | <18th | |
Rutile | (Ti,Mn,Cr,S,Nb)1O2 | 450–600 | 20th | |
Black | Spinel | CuCr2O4 | 450–600 | 19th |
Spinel 4 | (Co,Fe)(Fe,Cr)12O4 | 450–600 | <18th | |
Spinel 4 | (Fe,Mn)(Fe,Cr,Mn)12O4 | 450–600 | <18th | |
CuO | 300–350 | <18th | ||
disordered | C | 1350–1590 | <18th |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomban, P. Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness and Limitations of the Raman Analysis. Materials 2022, 15, 3158. https://doi.org/10.3390/ma15093158
Colomban P. Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness and Limitations of the Raman Analysis. Materials. 2022; 15(9):3158. https://doi.org/10.3390/ma15093158
Chicago/Turabian StyleColomban, Philippe. 2022. "Full Spectral Range Raman Signatures Related to Changes in Enameling Technologies from the 18th to the 20th Century: Guidelines, Effectiveness and Limitations of the Raman Analysis" Materials 15, no. 9: 3158. https://doi.org/10.3390/ma15093158