A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials
Abstract
:1. Introduction
1.1. Different Classes of Perovskite-Based Cathode Materials for SOFC
1.2. Surface Composition-Performance Relationship of SOFC Cathodes
1.3. Advanced Characterization of SOFC Cathdoe by Using Electron Spectroscopic Techniques
2. X-ray Photoelectron Spectroscopy (XPS)
XPS Principle and Experimental Details
3. Characterization of LSCF Cathodes by Using XPS
3.1. XPS for Surface Segregation or Enrichment of Sr on the Surface
3.2. XPS for Element Migration of Sr and Co
4. Performance and Degradation Mechanism of LSCF Cathodes
4.1. Microstructural Degradation of the LSCF Cathode
4.2. Compositional Changes in LSCF Cathode
5. Strategies to Suppress Sr Surface Segregation
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldinelli, A.; Barelli, L.; Bidini, G.; Bonucci, F.; Iskenderoğlu, F.C. Regarding Solid Oxide Fuel Cells simulation through artificial intelligence: A neural networks application. Appl. Sci. 2018, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Pandey, R.; Presto, S.; Carpanese, M.P.; Barbucci, A.; Viviani, M.; Singh, P. Suitability of Sm3+-Substituted SrTiO3 as anode materials for solid oxide fuel cells: A correlation between structural and electrical properties. Energies 2019, 12, 4042. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.H.; Song, K.E.; Baek, S.-W.; Kang, H.; Choi, W.; Shin, T.H.; Park, J.-Y.; Kim, J.H. Pr- and Sm-Substituted Layered Perovskite Oxide Systems for IT-SOFC Cathodes. Energies 2021, 14, 6739. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Bosio, B.; Baldinelli, A.; Barelli, L. Optimization of a reference kinetic model for solid oxide fuel cells. Catalysts 2020, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, C.; Ferreira, A.; Santos, D.M.F. Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies. Fuels 2021, 2, 23. [Google Scholar] [CrossRef]
- Sivasankaran, V.; Combemale, L.; François, M.; Caboche, G. Ce0.9Gd0.1O2−x for intermediate temperature solid oxide fuel cells: Influence of cathode thickness and anode functional layer on performance. Energies 2020, 13, 4400. [Google Scholar] [CrossRef]
- Anwar, M.; Muhammed Ali, S.A.; Baharuddin, N.A.; Raduwan, N.F.; Muchtar, A.; Somalu, M.R. Structural, optical and electrical properties of Ce0.8Sm0.2−xErxO2−δ (x = 0–0.2) Co-doped ceria electrolytes. Ceram. Int. 2018, 44, 13639–13648. [Google Scholar] [CrossRef]
- Guk, E.; Ranaweera, M.; Venkatesan, V.; Kim, J.-S. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode. Sensors 2016, 16, 1329. [Google Scholar] [CrossRef] [Green Version]
- Tu, Z.; Tian, Y.; Liu, M.; Jin, B.; Akbar, M.; Mushtaq, N.; Wang, X.; Dong, W.; Wang, B.; Xia, C. Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells. Nanomaterials 2021, 11, 2277. [Google Scholar] [CrossRef]
- Li, S.; Zhan, C.; Yang, Y. Control System Based on Anode Offgas Recycle for Solid Oxide Fuel Cell System. Math. Probl. Eng. 2018, 2018, 4198954. [Google Scholar] [CrossRef] [Green Version]
- Wachsman, E.D.; Lee, K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Su, S.; Gao, X.; Zhang, Q.; Kong, W.; Chen, D. Anode-Versus Cathode-Supported Solid Oxide Fuel Cell: Effect of Cell Design on the Stack Performance. Int. J. Electrochem. Sci. 2015, 10, 2487–2503. [Google Scholar]
- Jiao, R.; Zhang, W.; Sun, H.; Zhu, Z.; Yang, Z.; Liang, W.; Li, A. N- and S-doped nanoporous carbon framework derived from conjugated microporous polymers incorporation with ionic liquids for efficient oxygen reduction reaction. Mater. Today Energy 2020, 16, 100382. [Google Scholar] [CrossRef]
- Li, Y.; Gemmen, R.; Liu, X. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. J. Power Sources 2010, 195, 3345–3358. [Google Scholar] [CrossRef]
- Silva, C.L.S.; Gama, L.M.; dos Santos, J.A.F.; Paes, H.R., Jr.; Domingues, R.Z.; Rangel, M.d.C. Effect of La0.8Sr0.2MnO3 powder addition in the precursor solution on the properties of cathode films deposited by spray pyrolysis. Rev. Matér. 2017, 22, 1–10. [Google Scholar]
- Kim, J.-H.; Manthiram, A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective. J. Mater. Chem. A 2015, 3, 24195–24210. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Y.; Xia, C. Effects of Ceria Conductivity on the Oxygen Incorporation at the LSCF-SDC-Gas Three-Phase Boundary. J. Electrochem. Soc. 2015, 162, F33–F39. [Google Scholar] [CrossRef]
- Almar, L.; Szász, J.; Weber, A.; Ivers-Tiffée, E. Oxygen Transport Kinetics of Mixed Ionic-Electronic Conductors by Coupling Focused Ion Beam Tomography and Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2017, 164, F289–F297. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Hui, R.; Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144. [Google Scholar] [CrossRef]
- Guo, S.; Wu, H.; Puleo, F.; Liotta, L. B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1−xSrxCo1−yFeyO3–δ Perovskite Oxides as Cathodes for IT-SOFCs. Catalysts 2015, 5, 366–391. [Google Scholar] [CrossRef] [Green Version]
- Burnwal, S.K.; Bharadwaj, S.; Kistaiah, P. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells. J. Mol. Eng. Mater. 2016, 4, 1630001. [Google Scholar] [CrossRef]
- Zamudio-García, J.; Albarrán-Aroca, N.; Porras-Vázquez, J.M.; Losilla, E.R.; Marrero-López, D. Influence of Bi1.5Y0.5O3 Active Layer on the Performance of Nanostructured La0.8Sr0.2MnO3 Cathode. Appl. Nano 2020, 1, 14–24. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Raharjo, J.; Anwar, M.; Khaerudini, D.S.; Muchtar, A.; Spiridigliozzi, L.; Somalu, M.R. Carbonate-based lanthanum strontium cobalt ferrite (LSCF)-samarium-doped ceria (SDC) composite cathode for low-temperature solid oxide fuel cells. Appl. Sci. 2020, 10, 3761. [Google Scholar]
- Pérez-Flores, J.C.; Castro-García, M.; Crespo-Muñoz, V.; Valera-Jiménez, J.F.; García-Alvarado, F.; Canales-Vázquez, J. Analysis of Performance Losses and Degradation Mechanism in Porous La2−X NiTiO6−δ:YSZ Electrodes. Materials 2021, 14, 2819. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, C.; Liang, L.; Li, K.; Jia, L.; Pu, J.; Jian, L.; Li, X.; Zhang, T. Degradation analysis and durability improvement for SOFC 1-cell stack. Appl. Energy 2016, 175, 414–420. [Google Scholar] [CrossRef]
- Van der Heide, P. X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices; Wiley: Hoboken, NJ, USA, 2011; ISBN 9781118162903. [Google Scholar]
- Nenning, A.; Fleig, J. Electrochemical XPS investigation of metal exsolution on SOFC electrodes: Controlling the electrode oxygen partial pressure in ultra-high-vacuum. Surf. Sci. 2019, 680, 43–51. [Google Scholar] [CrossRef]
- Rathore, S.S.; Kulkarni, A.P.; Fini, D.; Giddey, S.; Seeber, A. Evaluation of ((La0.60Sr0.40)0.95Co0.20Fe0.80O3−x)-Ag Composite Anode for Direct Ammonia Solid Oxide Fuel Cells and Effect of Pd Impregnation on the Electrochemical Performance. Solids 2021, 2, 177–191. [Google Scholar] [CrossRef]
- Jiang, S.P. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—A review. Int. J. Hydrogen Energy 2019, 44, 7448–7493. [Google Scholar] [CrossRef]
- Ding, H.; Virkar, A.V.; Liu, M.; Liu, F. Suppression of Sr surface segregation in La1−xSrxCo1−yFeyO3−δ: A first principles study. Phys. Chem. Chem. Phys. 2013, 15, 489–496. [Google Scholar] [CrossRef]
- DiGiuseppe, G.; Boddapati, V.; Mothikhana, H. XPS Studies of LSCF Interfaces after Cell Testing. Adv. Mater. Sci. Eng. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vovk, G.; Chen, X.; Mims, C.A. In situ XPS studies of perovskite oxide surfaces under electrochemical polarization. J. Phys. Chem. B 2005, 109, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- García-López, E.; Marcì, G.; Puleo, F.; La Parola, V.; Liotta, L.F. La1−xSrxCo1−yFeyO3−δ: Preparation, characterization and solar photocatalytic activity. Appl. Catal. B Environ. 2015, 178, 218–225. [Google Scholar] [CrossRef]
- Knöfel, C.; Chen, M.; Mogensen, M. The effect of humidity and oxygen partial pressure on LSM-YSZ cathode. Fuel Cells 2011, 11, 669–677. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, K.; Zhao, L.; Chi, B.; Pu, J. Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions. Int. J. Hydrogen Energy 2014, 39, 15868–15876. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Liu, Q.; Zhang, L.; Zhang, X.; Chana, S.H. Effect of Sr surface segregation of La0.6Sr0.4Co0.2Fe0.8O3−δ electrode on its electrochemical performance in SOC. J. Electrochem. Soc. 2015, 162, F1316–F1323. [Google Scholar] [CrossRef]
- Jiang, Z.; Wen, K.; Song, C.; Liu, T.; Dong, Y.; Liu, M.; Deng, C.; Deng, C.; Yang, C. Highly Conductive Mn-Co Spinel Powder Prepared by Cu-Doping Used for Interconnect Protection of SOFC. Coatings 2021, 11, 1298. [Google Scholar] [CrossRef]
- Ha, M.N.; Lu, G.; Liu, Z.; Wang, L.; Zhao, Z. 3DOM-LaSrCoFeO6−δ as a highly active catalyst for the thermal and photothermal reduction of CO2 with H2O to CH4. J. Mater. Chem. A 2016, 4, 13155–13165. [Google Scholar] [CrossRef]
- Bucher, E.; Sitte, W. Long-term stability of the oxygen exchange properties of (La,Sr)1−Z(Co,Fe)O3−δ in dry and wet atmospheres. Solid State Ionics 2011, 192, 480–482. [Google Scholar] [CrossRef]
- Mutoro, E.; Crumlin, E.J.; Pöpke, H.; Luerssen, B.; Amati, M.; Abyaneh, M.K.; Biegalski, M.D.; Christen, H.M.; Gregoratti, L.; Janek, J.; et al. Reversible compositional control of oxide surfaces by electrochemical potentials. J. Phys. Chem. Lett. 2012, 3, 40–44. [Google Scholar] [CrossRef]
- Yu, Y.; Ludwig, K.F.; Woicik, J.C.; Gopalan, S.; Pal, U.B.; Kaspar, T.C.; Basu, S.N. Effect of Sr Content and Strain on Sr Surface Segregation of La1−xSrxCo0.2Fe0.8O3−δ as Cathode Material for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 26704–26711. [Google Scholar] [CrossRef]
- Wang, H.; Yakal-Kremski, K.J.; Yeh, T.; Rupp, G.M.; Limbeck, A.; Fleig, J.; Barnett, S.A. Mechanisms of performance degradation of (La,Sr)(Co,Fe)O3−δ solid oxide fuel cell cathodes. J. Electrochem. Soc. 2016, 163, F581–F585. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, F.; Chi, B.; Pu, J.; Jian, L.; Jiang, S.P. A stability study of impregnated LSCF-GDC composite cathodes of solid oxide fuel cells. J. Alloys Compd. 2013, 578, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, X.; Yang, Z.; Wang, Z.; Chen, X.; Yang, S.; Wei, M. New insights into element migration on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes of intermediate temperature solid oxide fuel cells. Solid State Ionics 2019, 334, 145–151. [Google Scholar] [CrossRef]
- Mosiaek, M.; Kdra, A.; Krzan, M.; Bielaska, E.; Tatko, M. Ba0.5Sr0.5Co0.8Fe0.2O3−La0.6Sr0.4Co0.8Fe0.2O3− composite cathode for solid oxide fuel cell. Arch. Metall. Mater. 2016, 61, 1137–1142. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Harris, D., Swain, E., Robey, C., Aiello, E., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; ISBN 0-471-04372-9. [Google Scholar]
- Huang, K.; Zampieri, A.; Ise, M. Cathode Polarizations of a Cathode-Supported Solid Oxide Fuel Cell. J. Electrochem. Soc. 2010, 157, B1471. [Google Scholar] [CrossRef] [Green Version]
- Cesário, M.R.; MacEdo, D.A.; Martinelli, A.E.; Nascimento, R.M.; Barros, B.S.; Melo, D.M.A. Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC. Cryst. Res. Technol. 2012, 47, 723–730. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Anwar, M.; Baharuddin, N.A.; Somalu, M.R.; Muchtar, A. Enhanced electrochemical performance of LSCF cathode through selection of optimum fabrication parameters. J. Solid State Electrochem. 2018, 22, 263–273. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, J.; He, T.; Cong, L.; Wang, J.; Su, W. Single intermedium-temperature SOFC prepared by glycine-nitrate process. J. Alloys Compd. 2003, 353, 257–262. [Google Scholar] [CrossRef]
- Loureiro, F.J.A.; Yang, T.; Stroppa, D.G.; Fagg, D.P. Pr2O2SO4–La0.6Sr0.4Co0.2Fe0.8O3−δ: A new category of composite cathode for intermediate temperature-solid oxide fuel cells. J. Mater. Chem. A 2015, 3, 12636–12641. [Google Scholar] [CrossRef]
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes †. Chem. Rev. 2004, 104, 4791–4843. [Google Scholar] [CrossRef]
- Perry Murray, E.; Sever, M.J.; Barnett, S.A. Electrochemical performance of (La,Sr)(Co,Fe)O3−(Ce,Gd)O3 composite cathodes. Solid State Ionics 2002, 148, 27–34. [Google Scholar] [CrossRef]
- Abdul Samat, A.; Somalu, M.R.; Muchtar, A.; Hassan, O.H.; Osman, N. LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application. J. Sol-Gel Sci. Technol. 2016, 78, 382–393. [Google Scholar] [CrossRef]
- Perry, N.H.; Ishihara, T. Roles of bulk and surface chemistry in the oxygen exchange kinetics and related properties of mixed conducting perovskite oxide electrodes. Materials 2016, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Saunders, M.; Chen, K.; Gao, H.; Suvorova, A.; Rickard, W.D.A.; Quadir, Z.; Cui, C.Q.; Jiang, S.P. A FIB-STEM study of strontium segregation and interface formation of directly assembled La0.6Sr0.4Co0.2Fe0.8O3−δ Cathode on Y2O3−ZrO2 electrolyte of solid oxide fuel cells. J. Electrochem. Soc. 2018, 165, F417–F429. [Google Scholar] [CrossRef]
- Chen, K.; Ai, N.; O’Donnell, K.M.; Jiang, S.P. Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells. Phys. Chem. Chem. Phys. 2015, 17, 4870–4874. [Google Scholar] [CrossRef]
- Mirzababaei, J.; Chuang, S. La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells. Catalysts 2014, 4, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Giannici, F.; Canu, G.; Chiara, A.; Gambino, M.; Aliotta, C.; Longo, A.; Buscaglia, V.; Martorana, A. Cation Diffusion and Segregation at the Interface between Samarium-Doped Ceria and LSCF or LSFCu Cathodes Investigated with X-ray Microspectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 44466–44477. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Lee, W.; Han, J.W.; Chen, Y.; Cai, Z.; Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 2013, 135, 7909–7925. [Google Scholar] [CrossRef]
- Chen, K.; Li, N.; Ai, N.; Cheng, Y.; Rickard, W.D.A.; Jiang, S.P. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La0.6Sr0.4Co0.2Fe0.8O3−δ Electrodes on Y2O3–ZrO2 Electrolyte of Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 31729–31737. [Google Scholar] [CrossRef]
- Hashimoto, S.I.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J. Oxygen nonstoichiometry and thermo-chemical stability of La0.6Sr0.4Co1−yFeyO3−δ (y = 0.2, 0.4, 0.6, 0.8). Solid State Ionics 2010, 181, 1713–1719. [Google Scholar] [CrossRef]
- Wang, F.; Nishi, M.; Brito, M.E.; Kishimoto, H.; Yamaji, K.; Yokokawa, H.; Horita, T. Sr and Zr diffusion in LSCF/10GDC/8YSZ triplets for solid oxide fuel cells (SOFCs). J. Power Sources 2014, 258, 281–289. [Google Scholar] [CrossRef]
- Muhammed Ali, S.A.; Anwar, M.; Mahmud, L.S.; Kalib, N.S.; Muchtar, A.; Somalu, M.R. Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3−δ-Ce0.8Sm0.2O1.9 composite cathode. J. Solid State Electrochem. 2019, 23, 1155–1164. [Google Scholar] [CrossRef]
- Radvanyi, E.; De Vito, E.; Porcher, W.; Jouanneau Si Larbi, S. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J. Anal. At. Spectrom. 2014, 29, 1120–1131. [Google Scholar] [CrossRef]
- Gerstl, M.; Nenning, A.; Iskandar, R.; Rojek-Wöckner, V.; Bram, M.; Hutter, H.; Opitz, A.K. The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres. Materials 2016, 9, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Railsback, J.; Choi, S.H.; Barnett, S.A. Effectiveness of dense Gd-doped ceria barrier layers for (La,Sr)(Co,Fe)O3 cathodes on Yttria-stabilized zirconia electrolytes. Solid State Ionics 2019, 335, 74–81. [Google Scholar] [CrossRef]
- Kim, C.; Kim, S.; Jang, I.; Yoon, H.; Song, T.; Paik, U. Facile fabrication strategy of highly dense gadolinium-doped ceria/yttria-stabilized zirconia bilayer electrolyte via cold isostatic pressing for low temperature solid oxide fuel cells. J. Power Sources 2019, 415, 112–118. [Google Scholar] [CrossRef]
- Knibbe, R.; Hjelm, J.; Menon, M.; Pryds, N.; Søgaard, M.; Wang, H.J.; Neufeld, K. Cathode-electrolyte interfaces with CGO barrier layers in SOFC. J. Am. Ceram. Soc. 2010, 93, 2877–2883. [Google Scholar] [CrossRef]
- De Vero, J.C.; Develos-Bagarinao, K.; Kishimoto, H.; Ishiyama, T.; Yamaji, K.; Horita, T.; Yokokawa, H. Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3−δ thin film. J. Power Sources 2018, 377, 128–135. [Google Scholar] [CrossRef]
- Fan, E.S.C.; Kuhn, J.; Kesler, O. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes: Influence of carbon black pore former on performance and degradation. J. Power Sources 2016, 316, 72–84. [Google Scholar] [CrossRef]
- Uhlenbruck, S.; Jordan, N.; Sebold, D.; Buchkremer, H.P.; Haanappel, V.A.C.; Stöver, D. Thin film coating technologies of (Ce,Gd)O2−δ interlayers for application in ceramic high-temperature fuel cells. Thin Solid Films 2007, 515, 4053–4060. [Google Scholar] [CrossRef]
- Roeder, J.F.; Golalikhani, M.; Zeberoff, A.F.; Van Buskirk, P.C.; Torabi, A.; Barton, J.; Willman, C.; Ghezel-Ayagh, H.; Wen, Y.; Huang, K. Group IVA Oxide Surface Modification of LSCF Cathode Powders by Atomic Layer Deposition. ECS Trans. 2017, 78, 935–942. [Google Scholar] [CrossRef]
- Lynch, M.E.; Yang, L.; Qin, W.; Choi, J.J.; Liu, M.; Blinn, K.; Liu, M. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3−δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy Environ. Sci. 2011, 4, 2249–2258. [Google Scholar] [CrossRef]
- Giuliano, A.; Carpanese, M.P.; Clematis, D.; Boaro, M.; Pappacena, A.; Deganello, F.; Liotta, L.F.; Barbucci, A. Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3−δ versus Ba0.5Sr0.5Co0.8Fe0.2O3−δ. J. Electrochem. Soc. 2017, 164, F3114–F3122. [Google Scholar] [CrossRef]
- Wu, X.; Tian, Y.; Zhou, X.; Kong, X.; Zhang, J.; Zuo, W.; Ye, X. High performance yttria-stabilized zirconia based intermediate temperature solid oxide fuel cells with double nano layer composite cathode. Int. J. Hydrogen Energy 2017, 42, 1093–1102. [Google Scholar] [CrossRef]
- Lee, S.-I.; Kim, J.; Son, J.W.; Lee, J.H.; Kim, B.K.; Je, H.J.; Lee, H.W.; Song, H.; Yoon, K.J. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts. J. Power Sources 2014, 250, 15–20. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Liu, X. High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3−δ cathode for solid oxide fuel cells. J. Power Sources 2014, 269, 412–417. [Google Scholar] [CrossRef]
- Ding, D.; Liu, M.; Liu, Z.; Li, X.; Blinn, K.; Zhu, X.; Liu, M. Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Adv. Energy Mater. 2013, 3, 1149–1154. [Google Scholar] [CrossRef]
- Lee, S.; Miller, N.; Abernathy, H.; Gerdes, K.; Manivannan, A. Effect of Sr-doped LaCoO3 and LaZrO3 infiltration on the performance of SDC-LSCF cathode. J. Electrochem. Soc. 2011, 158, 735–742. [Google Scholar] [CrossRef]
- Hong, T.; Lee, S.; Ohodnicki, P.; Brinkman, K. A highly scalable spray coating technique for electrode infiltration: Barium carbonate infiltrated La0.6Sr0.4Co0.2Fe0.8O3−δ highly scalable spray coating technique for electrode infiltration perovskite structured electrocatalyst with demonstrated long ter. Int. J. Hydrogen Energy 2017, 42, 24978–24988. [Google Scholar] [CrossRef]
- Tomov, R.I.; Mitchell-Williams, T.; Gao, C.; Kumar, R.V.; Glowacki, B.A. Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration. J. Appl. Electrochem. 2017, 47, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Teng, Z.; Xiao, Z.; Yang, G.; Guo, L.; Yang, X.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3−δ perovskite. Mater. Today Energy 2020, 17, 100458. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, S.P. Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3−δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method. J. Mater. Chem. A 2013, 1, 4871–4878. [Google Scholar] [CrossRef]
- Chen, K.; He, S.; Li, N.; Cheng, Y.; Ai, N.; Chen, M.; Rickard, W.D.A.; Zhang, T.; Jiang, S.P. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3−δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells. J. Power Sources 2018, 378, 433–442. [Google Scholar] [CrossRef]
Elements | Binding Energy (eV) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1s | 2s | 2p1/2 | 2p3/2 | 3s | 3p1/2 | 3p3/2 | 3d3/2 | 3d5/2 | |
La | 38,925 | 6266 | 5891 | 5483 | 1362 | 1209 | 1128 | 853 | 836 |
Sr | 16,105 | 2216 | 2007 | 1904 | 358.7 | 280.3 | 270 | 136 | 134.2 |
Ba | 37,441 | 5989 | 5627 | 5247 | 1293 | 1137 | 1063 | 795.7 | 780.5 |
Sm | 46,834 | 7737 | 7312 | 6716 | 1723 | 1541 | 1420 | 1110.9 | 1083.4 |
Gd | 50,239 | 8376 | 7930 | 7243 | 1881 | 1688 | 1544 | 1221.9 | 1189.6 |
Y | 17,038 | 2373 | 2156 | 2080 | 392 | 310.6 | 298.8 | 157.7 | 155.8 |
Zr | 17,998 | 2532 | 2307 | 2223 | 430.3 | 343.5 | 329.8 | 181.1 | 178.8 |
Nb | 18,986 | 2698 | 2465 | 2371 | 466.6 | 376.1 | 360.6 | 205 | 202.3 |
Tb | 51,996 | 8708 | 8252 | 7514 | 1968 | 1768 | 1611 | 1276.9 | 1241.1 |
Pd | 24,350 | 3604 | 3330 | 3173 | 671.6 | 559.9 | 532.3 | 340.5 | 335.2 |
Co | 7709 | 925.1 | 793.2 | 778.1 | 101 | 58.9 | 58.9 | - | - |
Fe | 7112 | 844.6 | 719.9 | 706.8 | 91.3 | 52.7 | 52.7 | - | - |
Ni | 8333 | 1008.6 | 870 | 852.7 | 110.8 | 68 | 67.2 | - | - |
Cr | 5989 | 696 | 583.8 | 574.1 | 74.1 | 42.2 | 42.2 | - | - |
Ca | 4038.5 | 438.4 | 349.7 | 346.2 | 44.3 | 25.4 | 25.4 | - | - |
Mn | 6539 | 769.1 | 649.4 | 638.7 | 82.3 | 47.2 | 47.2 | - | - |
O | 531 | 22 | - | - | - | - | - | - | - |
Element | Binding Energy (eV) | |||
---|---|---|---|---|
Non-Treated | Open Circuit | 100 mA cm−2 | 200 mA cm−2 | |
La 3d5/2 | 832.97 | 832.58 | 833.45 | 832.71 |
Sr 3d5/2 | 131.78 | 131.66 | 131.54 | 132.45 |
Co 2p3/2 | 779.57 | 779.56 | 778.99 | 779.06 |
Fe 2p3/2 | 709.21 | 709.1 | 709.4 | 709.37 |
O 1s | 531.33 | 531.56 | 531.24 | 531.41 |
Depth (nm) | Sr/La | Co/Fe | ||||
---|---|---|---|---|---|---|
Non-Treated | 100 mA cm−2 | 200 mA cm−2 | Non-Treated | 100 mA cm−2 | 200 mA cm−2 | |
0 | 2.048 | 8.678 | 1.563 | 0.588 | 0.57 | 0.278 |
5 | 0.463 | 2.214 | 1.51 | 0.498 | 0.65 | 0.401 |
10 | 0.597 | 4.03 | 1.661 | 0.523 | 0.678 | 0.356 |
15 | 0.578 | 3.626 | 1.424 | 0.488 | 0.493 | 0.392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, M.; Shaikh Abdul, M.A.; Khan, U.M.; Hassan, M.; Khoja, A.H.; Muchtar, A. A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials. Materials 2022, 15, 2540. https://doi.org/10.3390/ma15072540
Anwar M, Shaikh Abdul MA, Khan UM, Hassan M, Khoja AH, Muchtar A. A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials. Materials. 2022; 15(7):2540. https://doi.org/10.3390/ma15072540
Chicago/Turabian StyleAnwar, Mustafa, Muhammed Ali Shaikh Abdul, Uneeb Masood Khan, Muhammad Hassan, Asif Hussain Khoja, and Andanastuti Muchtar. 2022. "A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials" Materials 15, no. 7: 2540. https://doi.org/10.3390/ma15072540
APA StyleAnwar, M., Shaikh Abdul, M. A., Khan, U. M., Hassan, M., Khoja, A. H., & Muchtar, A. (2022). A Review of X-ray Photoelectron Spectroscopy Technique to Analyze the Stability and Degradation Mechanism of Solid Oxide Fuel Cell Cathode Materials. Materials, 15(7), 2540. https://doi.org/10.3390/ma15072540