Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of BMPC Samples
2.2. pH Determination of MPC Hydration Product
2.3. Characterization of BMPC Samples
2.4. Cell Culture and Cytotoxicity Experiments
2.5. Laser Confocal Microscopy Experiment
3. Results
3.1. Hydration Products and pH of MPC
3.2. The SEM Images of BMPC Specimens
3.3. The Characterization Results of BMPC Samples
3.4. The Cytotoxicity Results with BMPC by MTT Assay
3.5. The Laser Confocal Microscopy Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Springfield, D. Autograft reconstructions. Orthop. Clin. N. Am. 1996, 27, 483–492. [Google Scholar] [CrossRef]
- Chen, S.H.; Lei, M.; Xie, X.H.; Zheng, L.Z.; Yao, D.; Wang, X.L.; Li, W.; Zhao, Z.; Kong, A.; Xiao, D.M. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. J. Orthop. Translat. 2020, 24, 112–120. [Google Scholar]
- Yang, S.; Leong, K.F.; Du, Z.; Chua, C.K. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 2002, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Enríquez, J.; Reyes-Gasga, J. Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication. Ultrason. Sonochem. 2013, 20, 948–954. [Google Scholar] [CrossRef]
- Jia, J.; Zhou, H.; Wei, J.; Jiang, X.; Hua, H.; Chen, F.; Wei, S.; Shin, J.W.; Liu, C. Development of magnesium calcium phosphate biocement for bone regeneration. J. R. Soc. Interface 2010, 7, 1171–1180. [Google Scholar] [CrossRef]
- Zahra, S. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120 Pt B, 1406–1419. [Google Scholar]
- Liu, F.; Li, H.Y.; Wang, Z.; Zhang, H.N.; Wang, Y.Z.; Xu, H. Carboxymethyl chitosan reduces inflammation and promotes osteogenesis in a rabbit knee replacement model. BMC Musculoskelet. Disord. 2020, 21, 775. [Google Scholar] [CrossRef]
- Gemma, M.; Maria-Pau, G. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 2011, 7, 1853–1861. [Google Scholar]
- Grossardt, C.; Ewald, A.; Grover, L.M.; Barralet, J.E.; Gbureck, U. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng. Part A 2010, 16, 3687–3695. [Google Scholar] [CrossRef]
- Rita, G.; Laura, M.; Francesca, R.; Piero, B. Tuning the properties of magnesium phosphate-based bone cements: Effect of powder to liquid ratio and aqueous solution concentration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 248–255. [Google Scholar]
- Liu, Y.H.; Kumar, S.; Kwag, J.H.; Ra, C.S. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J. Chem. Technol. Biotechnol. 2013, 88, 181–189. [Google Scholar] [CrossRef]
- Gong, C.T.; Fang, S.; Xia, K.Z.; Chen, J.T.; Guo, L.Y.; Guo, W.C. Enhancing the mechanical properties and cytocompatibility of magnesium potassium phosphate cement by incorporating oxygen-carboxymethyl chitosan. Regen. Biomater. 2020, 8, rbaa048. [Google Scholar] [CrossRef] [PubMed]
- Uwe, K.; Elke, V.; Tobias, R.; Frank, A.M.; Katharina, Z.; Uwe, G. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 2010, 21, 2947–2953. [Google Scholar]
- Yi, H.H.; Yi, Z.; Lu, J.B.; Li, D.X. Failure Mechanism of Magnesia-phosphate Cement under Low Temperature Curing Condition. Bull. Chin. Ceram. Soc. 2014, 33, 197–201. [Google Scholar]
- Vojtova, L.; Michlovska, L.; Valova, K.; Zboncak, M.; Trunec, M.; Castkova, K.; Krticka, M.; Pavlinakova, V.; Polacek, P.; Dzurov, M.; et al. The Effect of the Thermosensitive Biodegradable PLGA-PEG-PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement. Int. J. Mol. Sci. 2019, 20, 391. [Google Scholar] [CrossRef] [Green Version]
- Elaine, L.D.; David, B.N.; Myra, H.W.; Erica, N.G.; Weike, T.; Neeti, S.; Lina, F.C.; Donald, D.M.; Kenneth, J.L. The impact of ambient operating room temperature on neonatal and maternal hypothermia and associated morbidities: A randomized controlled trial. Am. J. Obstet. Gynecol. 2016, 214, 505.e1–505.e7. [Google Scholar]
- Roizen, M.F.; Sohn, Y.J.; L’Hommedieu, C.S. Operating room temperature prior to surgical draping: Effect on patient temperature in recovery room. Anesth. Analg. 1980, 59, 852–855. [Google Scholar] [CrossRef]
- Liao, J.G.; Lu, S.X.; Duan, X.Z.; Xie, Y.F.; Zhang, Y.X.; Li, Y.Q.; Zhou, A.G. Affecting mechanism of chitosan on water resistance of magnesium phosphate cement. Int. J. Appl. Ceram. Technol. 2018, 15, 514–521. [Google Scholar] [CrossRef]
- Li, H.; Chang, J. Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials 2004, 25, 5473–5480. [Google Scholar] [CrossRef]
- Miranda, R.B.; Fidel, S.R.; Boller, M.A.A. L929 cell response to root perforation repair cements: An in vitro cytotoxicity assay. Braz. Dent. J. 2009, 20, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Shuang, W.; Chao, X.; Yu, S.C.; Wu, X.P.; Zhou, J.; Dai, H.L. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement. J. Mech. Behav. Biomed. Mater. 2019, 94, 42–50. [Google Scholar]
- O’Neill, R.; McCarthy, H.O.; Montufar, E.B.; Ginebra, M.P.; Wilson, D.I.; Lennon, A.; Dunne, N. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater. 2017, 50, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Hao, W.; Wu, C.; Li, W.; Tao, J.; Ai, F.; Xin, H.; Wang, X. Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate. Biomed. Mater. 2020, 15, 045015. [Google Scholar] [CrossRef] [PubMed]
- Burguera, E.F.; Xu, H.H.; Weir, M.D. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J. Biomed. Mater. Res. B Appl. Biomater. 2006, 77, 126–134. [Google Scholar] [CrossRef]
- Liu, C.; Gai, W.; Pan, S.; Liu, Z. The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 2003, 24, 2995–3003. [Google Scholar] [CrossRef]
- Ahmed, K.; Zaidi, S.F.; Mati-Ur-Rehman; Rehman, R.; Kondo, T. Hyperthermia and protein homeostasis: Cytoprotection and cell death. J. Therm. Biol. 2020, 91, 102615. [Google Scholar] [CrossRef]
- Roseti, L.; Parisi, V.; Petretta, M.; Cavallo, C.; Desando, G.; Bartolotti, I.; Grigolo, B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 1246–1262. [Google Scholar] [CrossRef]
- Rather, H.A.; Jhala, D.; Vasita, R. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109761. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, P.M. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109776. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
RGR (%) | Toxicity Grade |
---|---|
≥100 | 0 Grade |
75~99 | 1 Grade |
50~74 | 2 Grade |
25~49 | 3 Grade |
1~24 | 4 Grade |
0 | 5 Grade |
BMPC0 | BMPC20 | BMPC40 | BMPC60 | |
---|---|---|---|---|
Setting for 48 h | ①② | ①②③④⑤⑥ | ③④⑤⑥⑦ | ③⑤⑥⑦ |
Soaking for 28 d | ➊➍➎ | ➊➋➌➏➐➑ | ➊➌➏➑ | ➊➌➏➑ |
Group | 1 d | 3 d | 5 d | |||
---|---|---|---|---|---|---|
RGB (%) | TG | RGB (%) | TG | RGB (%) | TG | |
BMPC0 | 81.75 | 1 | 75.68 | 1 | 76.08 | 1 |
BMPC20 | 89.68 | 1 | 84.93 | 1 | 83.95 | 1 |
BMPC40 | 103.97 | 0 | 108.90 | 0 | 103.12 | 0 |
BMPC60 | 107.14 | 0 | 113.01 | 0 | 107.58 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Qu, T.; Al-Ward, H.; Mu, L.; Qiu, H.; Zhang, Y. Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration. Materials 2022, 15, 2293. https://doi.org/10.3390/ma15062293
Lv S, Qu T, Al-Ward H, Mu L, Qiu H, Zhang Y. Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration. Materials. 2022; 15(6):2293. https://doi.org/10.3390/ma15062293
Chicago/Turabian StyleLv, Shaochun, Tianyu Qu, Hisham Al-Ward, Liting Mu, Hongbin Qiu, and Yunlong Zhang. 2022. "Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration" Materials 15, no. 6: 2293. https://doi.org/10.3390/ma15062293
APA StyleLv, S., Qu, T., Al-Ward, H., Mu, L., Qiu, H., & Zhang, Y. (2022). Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration. Materials, 15(6), 2293. https://doi.org/10.3390/ma15062293