A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Methods
3. Results and Discussion
3.1. XRD
3.2. TEM Microstructure
3.3. Raman Spectroscopy
3.4. X-ray Photoemission Spectroscopy (XPS)
3.5. Magnetic Properties
3.6. Mössbauer Spectrometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daenen, M.; de Fouw, R.D.; Hamers, B.; Janssen, P.G.A.; Schouteden, K.; Veld, M.A.J. The Wondrous Word of Carbon Nanotubes—A Review of Current Carbon Nanotube Technologies; Eindhoven University of Technology: Eindhoven, The Netherlands, 2003. [Google Scholar]
- Pereira, C.; Costa, R.S.; Lopes, L.; Bachiller-Baeza, B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.; Tavares, P.B.; Freire, C.; Pereira, A.M. Multifunctional mixed valence N-doped CNT@MFe2O4 hybrid nanomaterials: From engineered one-pot coprecipitation to application in energy storage paper supercapacitors. Nanoscale 2018, 10, 12820–12840. [Google Scholar] [CrossRef]
- Al Khabouri, S.; Al Harthi, S.; Maekawa, T.; Nagaoka, Y.; Elzain, M.E.; Al Hinai, A.; Al-Rawas, A.D.; Gismelseed, A.M.; Yousif, A.A. Composition, Electronic and Magnetic Investigation of the Encapsulated ZnFe2O4 Nanoparticles in Multiwall Carbon Nanotubes Containing Ni Residues. Nanoscale Res. Lett. 2015, 10, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Shen, L.; Li, L.; Zhou, S.; Huang, T.; Hu, C.; Pan, W.; Jing, X.; Sunc, J.; Gaod, L.; et al. Microwave sintering carbon nanotube/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. J. Eur. Ceram. Soc. 2013, 33, 2119–2126. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, M.; Li, Y.; Liu, J.; Ni, Z.; Qin, Z. A highly coercive carbon nanotube coated with Ni0.5Zn0.5Fe2O4 nanocrystals synthesized by chemical precipitation–hydrothermal process. J. Solid State Chem. 2007, 180, 3218–3223. [Google Scholar] [CrossRef]
- Salarizadeh, N.; Sadri, M.; Hosseini, H.; Sajedi, R.H. Synthesis and physicochemical characterization of NixZn1-xFe2O4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity. Carbon Lett. 2017, 24, 103–110. [Google Scholar]
- Chen, Y.; Wang, X.; Zhang, Q.; Li, Y.; Wang, H. Synthesis and characterization of MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposites and their use in hydrogels. J. Alloys Compd. 2011, 509, 4053–4059. [Google Scholar] [CrossRef]
- Zhou, X.; Han, Y.-H.; Zhang, Y.; Wang, Q.; Zhou, J.; Shen, L.; Huang, T.; Pan, W.; Xiang, C.; Tang, H.; et al. Ferrite multiphase/carbon nanotube composites sintered by spark plasma sintering. J. Ceram. Soc. Jpn. 2014, 122, 68–771. [Google Scholar] [CrossRef] [Green Version]
- Murzata, G.; Ahmad, I.; Hakeem, A.; Mao, P.; Guohua, X.; Farid, M.T.; Mustafa, G.; Kanwal, M.; Hussain, M. Effect of multi-walled carbon nanotubes in the structural and magnetic properties of Mn-Zn ferrite. Dig. J. Nanomater. Biostructures 2015, 10, 1393–1401. [Google Scholar]
- Rigo, C.; da Cruz Severo, E.; Mazutti, M.A.; Dotto, G.L.; Jahn, S.L.; Gündel, A.; Lucchese, M.M.; Chiavone-Filho, O.; Foletto, E.L. Preparation of Nickel Ferrite/Carbon Nanotubes Composite by Microwave Irradiation Technique for Use as Catalyst in Photo-Fenton Reaction. Mater. Res. 2017, 20, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Teber, A.; Cil, K.; Yilmaz, T.; Eraslan, B.; Uysal, D.; Surucu, G.; Baykal, A.H.; Bansal, R. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials. Aerospace 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Bahgat, M.; Ali Farghali, A.; El Rouby, W.; Khedr, M.; Mohassab-Ahmed, M.Y. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite. Appl. Nanosci. 2013, 3, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Zampiva, R.Y.S.; Junior, C.G.K.; Pinto, J.S.; Panta, P.C.; Alves, A.K.; Bergmann, C.P. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles—A study of surface area and spinel inversion influence. Appl. Surf. Sci. 2017, 422, 321–330. [Google Scholar] [CrossRef]
- Dyke, C.A.; Tour, J.M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem. Eur. J. 2004, 10, 813–817. [Google Scholar] [CrossRef]
- Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Peeterbroeckb, S.; Dubois, P.; et al. Functionalization of MWCNTs with atomic nitrogen. Micron 2009, 40, 85–88. [Google Scholar] [CrossRef]
- Kundu, S.; Xia, W.; Busser, W.; Becker, M.; Schmidt, D.A.; Havenith, M.; Muhler, M. The formation of nitrogen-containing functional groups on carbon nanotube surfaces: A quantitative XPS and TPD study. Phys. Chem. Chem. Phys. 2010, 12, 4351–4435. [Google Scholar] [CrossRef]
- Okpalugo, T.I.T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N.M.D. High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Yun, S.-M.; Kim, J.-W.; Jung, M.-J.; Nho, Y.-C.; Kang, P.-H.; Lee, Y.-S. An XPS Study of Oxyfluorinated Multiwalled Carbon Nano Tubes. Carbon Lett. 2007, 8, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Wepasnick, K.A.; Smith, B.A.; Bitter, J.L.; Fairbrother, D.H. Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 2010, 396, 1003–1014. [Google Scholar] [CrossRef]
- Jang, M.-H.; Sik Hwang, Y. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. PLoS ONE 2018, 13, e0194935. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, M.M.; Boncel, S.; Herman, A.; Krawczyk, T.; Jakóbik-Kolon, A.; Pawlyta, M.; Krzywiecki, M.; Chrobak, A.; Minoshima, M.; Sugihara, F.; et al. Oxygen Functional Groups on MWCNT Surface as Critical Factor Boosting T2 Relaxation Rate of Water Protons: Towards Improved CNT-Based Contrast Agents. Int. J. Nanomed. 2020, 15, 7433–7450. [Google Scholar] [CrossRef]
- Mohl, M.; Kónya, Z.; Kukovecz, Á.; Kiricsi, I. Functionalization of Multi-Walled Carbon Nanotubes (MWCNTs) in Functionalized Nanoscale Materials, Devices and Systems. In Functionalized Nanoscale Materials, Devices and Systems. NATO Science for Peace and Security Series B: Physics and Biophysics; Vaseashta, A., Mihailescu, I.N., Eds.; Springer: Dordrecht Germany, 2008; pp. 365–368. [Google Scholar]
- Lipińska, M.E.; Rebelo, S.L.H.; Pereira, M.F.R.; Gomes, J.A.N.F.; Freire, C.; Figueiredo, J.L. New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 2012, 50, 3280–3294. [Google Scholar] [CrossRef]
- Bajorek, A.; Liszka, B.; Szostak, B.; . Pawlyta, M. Microstructure and magnetism of Ni0.5Zn0.5Fe2O4/MWCNTs nanocomposites. J. Magn. Magn. Mater. 2020, 503, 166634. [Google Scholar] [CrossRef]
- Baker, R.T.K.; Harris, P.S.; Thomas, R.B.; Waite, R.J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 1973, 30, 86–95. [Google Scholar] [CrossRef]
- Sacco, A., Jr.; Thacker, P.; Chang, T.N.; Chiang, A.T.S. The initiation and growth of filamentous carbon from α-iron in H2, CH4, H2O, CO2, and CO gas mixtures. J. Catal. 1984, 85, 224–236. [Google Scholar] [CrossRef]
- De Bokx, P.K.; Kock, A.J.H.M.; Boellaard, E.; Klop, W.; Geus, J.W. The formation of filamentous carbon on iron and nickel catalysts: I. Thermodynamics. J. Catal. 1985, 96, 454–467. [Google Scholar] [CrossRef]
- Kock, A.J.H.M.; de Bokx, P.K.; Boellaard, E.; Klop, W.; Geus, J.W. The formation of filamentous carbon on iron and nickel catalysts: II. Mechanism. J. Catal. 1985, 96, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Schaper, A.K.; Hou, H.; Greiner, A.; Phillipp, F. The role of iron carbide in multi-walled carbon nanotube growth. J. Catal. 2004, 222, 250–254. [Google Scholar] [CrossRef]
- Bondino, F.; Magnano, E.; Ciancio, R.; Castellarin-Cudia, C.; Barla, E.C.A.; Yakhou-Harris, F.; Rupesinghe, N.; Cepek, C. Stable Fe Nanomagnets Encapsulated Inside Vertically-Aligned Carbon Nanotubes. Phys. Chem. Chem. Phys. 2017, 19, 32079–32085. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, G.H.; Huang, S.; Dai, L.; Gao, R.; Wang, Z.L. Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J. Magn. Magn. Mater. 2001, 231, 9–12. [Google Scholar] [CrossRef]
- Jamrozik, A.; Mazurkiewicz, M.; Małolepszy, A.; Stobiński, L.; Matlak, K.; Korecki, J.; Kurzydłowski, K.J.; Burda, K. Mössbauer spectroscopy analysis of iron compounds in carboxylated multiwall carbon nanotubes and their ammonium salt. Phys. Status Solidi A 2011, 208, 1783–1786. [Google Scholar] [CrossRef]
- Perez-Cabero, M.; Taboada, J.B.; Guerrero-Ruiz, A.; Overweg, A.R.; Rodriguez-Ramos, I. The role of alpha-iron and cementite phases in the growing mechanism of carbon nanotubes: A 57Fe Mössbauer spectroscopy study. Phys. Chem. Chem. Phys. 2006, 8, 230–1235. [Google Scholar] [CrossRef]
- Prados, C.; Crespo, P.; González, J.M.; Hernando, A.; Marco, J.F.; Gancedo, R.; Grobert, N.; Terrones, M.; Walton, R.M.; Kroto, H.W. Hysteresis shift in Fe-filled carbon nanotubes due to γ-Fe. Phys. Rev. B Condens. Matter 2002, 65, 113405. [Google Scholar] [CrossRef] [Green Version]
- Ruskov, T.; Spirov, I.; Ritschel, M.; Müller, C.; Leonhardt, A.; Ruskov, R. Mössbauer morphological analysis of Fe-filled multi- walled carbon nanotube samples. J. Appl. Phys. 2006, 100, 084326. [Google Scholar] [CrossRef]
- Jamrozik, A.; Przewoźnik, J.; Mazurkiewicz, M.; Małolepszy, A.; Stobiński, A.; Trykowski, G.; Habina, I.; Matlak, K.; Korecki, J.; Kapusta, C.; et al. Influence of iron contaminations on local and bulk magnetic properties of nonfunctionalized and functionalized multi-wall carbon nanotubes. Phys. Status Solidi A 2014, 211, 661–669. [Google Scholar] [CrossRef]
- Luberda-Durnaś, K.; Nieznalska, M.; Mazurkiewicz, M.; Małolepszy, A.; Khachataryan, G.; Khachataryan, K.; Tomasik, P.; Michalski, O.; Matlak, K.; Korecki, J.; et al. Studies of Fe-binding sites within multiwall carbon nanotubes using Mössbauer spectroscopy. Phys. Status Solidi A 2011, 208, 1796–1800. [Google Scholar] [CrossRef]
- Jamrozik, A.; Przewoźnik, J.; Krysiak, S.; Korecki, J.; Trykowski, G.; Małolepszy, A.; Burda, K. Effect of grinding and the mill type on magnetic properties of carboxylated multiwall carbon nanotubes. Materials 2021, 14, 4057. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Ci, L.; Wei, B.; Xu, C.; Liang, J.; Wu, D.; Xie, S.; Zhou, W.; Li, Y.; Liu, Z.; Tang, D. Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Cryst. Growth 2001, 233, 823–828. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, L. Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chem. Commun. 2003, 9, 2378–2379. [Google Scholar] [CrossRef]
- He, Z.; Maurice, J.-L.; Gohier, A.; Lee, C.S.; Pribat, D.; Cojocaru, C.S. Iron Catalysts for the Growth of Carbon Nanofibers: Fe, Fe3C or Both? Chem. Mater. 2011, 23, 5379–5387. [Google Scholar] [CrossRef] [Green Version]
- Wirth, C.T.; Bayer, B.C.; Gamalski, A.D.; Esconjauregui, S.; Weatherup, R.S.; Ducati, C.; Baehtz, C.; Robertson, J.; Hofmann, S. The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chem. Mater. 2012, 24, 4633–4640. [Google Scholar] [CrossRef]
- Jourdain, V.; Bichara, C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 2013, 58, 2–39. [Google Scholar] [CrossRef] [Green Version]
- Heise, H.M.; Kuckuk, R.; Ojha, A.K.; Srivastava, A.; Srivastava, V.; Asthana, B.P. Characterization of carbonaceous materials using Raman spectroscopy: A comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitized porous carbon and graphite. J. Raman Spectrosc. 2009, 40, 344–353. [Google Scholar] [CrossRef]
- Shanov, V.; Yun, Y.-H.; Shultz, M.J. Synthesis and characterization of carbon nanotube materials (review). J. Univ. Chem. Technol. Metall. 2006, 41, 377–390. [Google Scholar]
- Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Basiuk, E.V.; Saniger, J.M. Application of principal component analysis to discriminate the Raman spectra of functionalized multi-walled carbon nanotubes. J. Raman Spectrosc. 2006, 37, 1302–1306. [Google Scholar] [CrossRef]
- Zhao, X.; Ando, Y.; Qin, L.-C.; Kataura, H.; Maniwa, Y.; Saito, R. Multiple splitting of G-band modes from individual multi-walled carbon nanotubes. Appl. Phys. Lett. 2002, 81, 2550–2552. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Eklund, P.C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705–814. [Google Scholar] [CrossRef]
- DiLeo, R.A.; Landi, B.J.; Raffaelle, R.P. Purity assessment of multi-walled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 2007, 101, 064307. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.M.; Ribeiro, H.; Seara, L.M.; Calado, H.D.R.; Ferlauto, A.S.; Paniago, R.M.; Leite, C.F.; Silva, G.G. Surface Properties of Oxidized and Aminated Multi-Walled Carbon Nanotubes. J. Braz. Chem. Soc. 2012, 23, 1078–1086. [Google Scholar] [CrossRef] [Green Version]
- Alemán, B.; Vila, M.; Vilatela, J.J. Surface Chemistry Analysis of Carbon Nanotube Fibers by X-Ray Photoelectron Spectroscopy. Phys. Status Solidi A 2018, 215, 1800187. [Google Scholar] [CrossRef] [Green Version]
- Behler, K.; Osswald, S.; Ye, H.; Dimovski, S.; Gogotsi, Y. Effect of thermal treatment on the structure of multi-walled carbon nanotubes. J. Nanoparticle Res. 2006, 8, 615–625. [Google Scholar] [CrossRef]
- Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Nesov, S.N.; Korusenko, P.M.; Bolotov, V.V.; Povoroznyuka, S.N.; Smirnov, D.A. Electronic Structure of Nitrogen-containing Carbon Nanotubes Irradiated with Argon Ions: XPS and XANES Studies. Phys. Solid State A 2017, 59, 2030–2035. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Ray, S.C.; Mazumder, D.; Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Chio, J.-W.; Tsai, H.M.; Shiu, H.-W.; Chen, C.-H.; et al. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study. Sci. Rep. 2017, 7, 42235. [Google Scholar] [CrossRef] [Green Version]
- Gautam, J.; Thanh, T.D.; Maiti, M.; Kim, N.H.; Lee, J.H. Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction. Carbon Vol. 2018, 137, 358–367. [Google Scholar] [CrossRef]
- Rani, K.K.; Karuppiah, C.; Wang, S.F.; Alaswad, S.O.; Sireesha, P.; Devasenathipathy, R.; Jose, R.; Yang, C.-C. Direct pyrolysis and ultrasound assisted preparation of N, S co-doped graphene/Fe3C nanocomposite as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Ultrason. Sonochem. 2020, 66, 105111. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 1970, 3, 285. [Google Scholar] [CrossRef]
- Guo, L.; Sun, J.; Ji, X.; Wei, J.; Wen, Z.; Yao, R.; Xu, H.; Ge, Q. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts. Commun. Chem. 2018, 1, 11. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Laua, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Wood, I.G.; Vocadlo, L.; Knight, K.S.; Dobson, D.P.; Marshall, W.G.; Price, G.D.J.; Brodholt, J. Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J. Appl. Crystallogr. 2004, 37, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.H.; Kim, S.H.; Choi, B.J.; Huh, S.H.; Chang, Y.; Kim, B.; Park, J.; Oh, S.J. Magnetic properties of needle-like α-FeOOH and γ-FeOOH nanoparticles. J. Korean Phys. Soc. 2004, 45, 1019–1024. [Google Scholar]
- Valezi, D.F.; Piccinato, M.T.; Sarvezuk, P.W.C.; Ivashita, F.F.; Paesano, A., Jr.; Varalda, J.; Moscac, D.H.; Urbano, A.; Guedes, C.L.B.; Di Mauro, E. Goethite (α-FeOOH) magnetic transition by ESR, Magnetometry and Mössbauer. Mater. Chem. Phys. 2016, 173, 179–185. [Google Scholar] [CrossRef]
- Boi, F.S.; Yuzhong Hua, Y.; Wen, J. New insights on the dynamics of the γ-Fe/α-Fe phase-transition inside iron-filled carbon nanotubes. RSC Adv. 2017, 7, 25025. [Google Scholar] [CrossRef] [Green Version]
- Lipert, K.; Ritschel, M.; Leonhardt, A.; Krupskaya, Y.; Buchner, B.; Klingeler, R. Magnetic properties of carbon nanotubes with and without catalyst. J. Phys. Conf. Ser. 2010, 200, 072061. [Google Scholar] [CrossRef]
- Gangwar, A.; Varghese, S.S.; Meena, S.S.; Prajapat, C.L.; Gupta, N.; Prasad, N.K. Fe3C nanoparticles for magnetic hyperthermia application. J. Magn. Magn. Mater. 2019, 481, 251–256. [Google Scholar] [CrossRef]
f-MWCNTs | D Band Position (cm–1) | G Band Position (cm–1) | D’ Band Position (cm–1) | D* Band Position (cm–1) | ID/IG | ID/ID* |
---|---|---|---|---|---|---|
pristine | 1357.4 | 1587.1 | 1619.6 | 2693.1 | 1.89 | 2.45 |
100 °C | 1357.8 | 1587.6 | 1619.5 | 2691.8 | 2.14 | 3.51 |
200 °C | 1358.3 | 1587.5 | 1619.6 | 2692.8 | 2.12 | 3.26 |
300 °C | 1359.1 | 1588.6 | 1620.1 | 2694.9 | 1.98 | 2.89 |
Samples | 2 K | 100 K | 300 K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f-MWCNTs pristine | M7T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.005 | M7T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.005 | M7T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.005 |
0.02 | 0.07 | 0.03 | 1.77 | 0.02 | 0.07 | 0.031 | 1.78 | −0.04 | 0.05 | 0.01 | 0.24 | |
f-MWCNTs calcined | M9T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.02 | M9T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.02 | M9T (emu/g) ±0.006 | MS (emu/g) ±0.006 | MR (emu/g) ±0.006 | Hc (kOe) ±0.02 |
100 °C | 0.40 | 0.53 | 0.08 | 1.18 | 0.07 | 0.19 | 0.08 | 1.23 | 0.01 | 0.16 | 0.39 | 0.26 |
200 °C | 0.54 | 0.47 | 0.08 | 0.74 | 0.11 | 0.22 | 0.08 | 0.69 | 0.01 | 0.19 | 0.40 | 0.22 |
300 °C | 0.51 | 0.63 | 0.09 | 0.63 | 0.05 | 0.21 | 0.08 | 0.65 | −0.03 | 0.18 | 0.44 | 0.24 |
Samples | 77 K | |||||
---|---|---|---|---|---|---|
f-MWCNTs pristine | δ (mm/s) ±0.02 | Γ (mm/s) ±0.02 | Δ or 2ε (mm/s) ±0.02 | Bhf (T) ±1.0 | (%) ±3 | Component |
−0.01 | 0.49 | 0 * | – | 49 | γ-Fe | |
0.43 | 0.68 | 0 * | 24.9 | 32 | Fe3C | |
0.37 | 0.33 | 0.90 | – | 19 | α-FeOOH | |
f-MWCNTs calcined at 300 °C | δ (mm/s) ±0.02 | Γ (mm/s) ±0.02 | Δ or 2ε (mm/s) ±0.02 | Bhf (T) ±1.0 | (%) ±3 | component |
0.02 | 0.30 | 0 * | – | 41 | γ-Fe | |
0.44 | 0.77 | 0.11 | 25.7 | 26 | Fe3C | |
0.46 | 0.74 | 0.70 | – | 20 | α-FeOOH | |
0.50 | 0.50 | −0.22 | 50.5 | 13 | α-FeOOH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajorek, A.; Szostak, B.; Dulski, M.; Greneche, J.-M.; Lewińska, S.; Liszka, B.; Pawlyta, M.; Ślawska-Waniewska, A. A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups. Materials 2022, 15, 977. https://doi.org/10.3390/ma15030977
Bajorek A, Szostak B, Dulski M, Greneche J-M, Lewińska S, Liszka B, Pawlyta M, Ślawska-Waniewska A. A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups. Materials. 2022; 15(3):977. https://doi.org/10.3390/ma15030977
Chicago/Turabian StyleBajorek, Anna, Bogumiła Szostak, Mateusz Dulski, Jean-Marc Greneche, Sabina Lewińska, Barbara Liszka, Mirosława Pawlyta, and Anna Ślawska-Waniewska. 2022. "A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups" Materials 15, no. 3: 977. https://doi.org/10.3390/ma15030977
APA StyleBajorek, A., Szostak, B., Dulski, M., Greneche, J.-M., Lewińska, S., Liszka, B., Pawlyta, M., & Ślawska-Waniewska, A. (2022). A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups. Materials, 15(3), 977. https://doi.org/10.3390/ma15030977