Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr0.8Sn0.2TiO4 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
3. Results and Discussion
3.1. Density, Structural and Microstructural Details of the ZST Ceramics
3.2. Dielectric Properties of ZST Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiedziuszko, S.J.; Hunter, I.C.; Itoh, T.; Kaobayashi, Y.; Nishikawa, T.; Wakino, K.; Stitzer, S.N. Dielectric materials, devices, and circuits. IEEE Trans. Microw. Theory Tech. 2002, MTT-50, 706–720. [Google Scholar] [CrossRef]
- Reaney, I.M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Ohsato, H. Functional advances of microwave dielectrics for next generation. Ceram. Int. 2012, 38, S141–S146. [Google Scholar] [CrossRef]
- Avadanei, O.G.; Banciu, M.G.; Nicolaescu, I.; Nedelcu, L. Superior modes in high permittivity cylindrical dielectric resonator antenna excited by a central rectangular slot. IEEE Trans. Antennas Propag. 2012, 60, 5032–5038. [Google Scholar] [CrossRef]
- Cruickshank, D.B. Microwave Material Applications: Device Miniaturization and Integration; Artech House: Norwood, MA, USA, 2016. [Google Scholar]
- Wang, X.; Li, H.; Zhou, J. Asymmetric transmission in a Mie-based dielectric metamaterial with Fano resonance. Materials 2019, 12, 1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.K.K.; Khan, T. Recent developments in bandwidth improvement of dielectric resonator antennas. Int. J. RF Microw. Comput-Aid. Eng. 2019, 29, e21701. [Google Scholar] [CrossRef]
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Martín, F. Planar Microwave Resonant Sensors: A Review and Recent Developments. Appl. Sci. 2020, 10, 2615. [Google Scholar] [CrossRef]
- Petzelt, J.; Kamba, S. Submillimeter and infrared response of microwave materials extrapolation to microwave properties. Mater. Chem. Phys. 2003, 79, 175–180. [Google Scholar] [CrossRef]
- Ioachim, A.; Toacsan, M.I.; Banciu, M.G.; Nedelcu, L.; Dutu, C.A.; Feder, M.; Plapcianu, C.; Lifei, F.; Nita, P. Effect of the sintering temperature on the Ba(Zn1/3Ta2/3)O3 dielectric properties. J. Eur. Ceram. Soc. 2007, 27, 1117–1122. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Ubic, R.; Jantunen, H. Microwave Materials and Applications; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar]
- Gonzales, J.; Zhang, C.; Gajare, S.G.; Newman, N. Switching microwave dielectric resonators from a high-Q on state to an off state using low-field electron paramagnetic resonance transitions. Appl. Phys. Lett. 2018, 113, 052903. [Google Scholar] [CrossRef]
- He, T.; Lv, C.; Li, W.; Huang, G.; Hu, Z.; Xu, J. The Dielectric Constant of Ba6−3x(Sm1−yNdy)8+2xTi18O54 (x = 2/3) Ceramics for Microwave Communication by Linear Regression Analysis. Materials 2020, 13, 5733. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, L.J.; Liu, F.; Liu, S.J. Crystal defects induced by evaporation of Co and Zn on the structure and microwave properties of Ba(Co0.7Zn0.3)(1/3)Nb2/3O3 ceramics. Ceram. Int. 2021, 47, 17745–17752. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Yang, H.; Wen, Q.; Yang, Q.; Gui, L.; Zhao, Q.; Li, E. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 2021, 10, 885–932. [Google Scholar] [CrossRef]
- Wakino, K.; Minai, K.; Tamura, H. Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. J. Am. Ceram. Soc. 1984, 67, 278–281. [Google Scholar] [CrossRef]
- Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H. Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material. J. Am. Ceram. Soc. 1995, 78, 793–796. [Google Scholar] [CrossRef]
- Ioachim, A.; Toacsan, M.I.; Banciu, M.G.; Nedelcu, L.; Stoica, G.; Annino, G.; Cassettari, M.; Martinelli, M.; Ramer, R. ZST type material for dielectric resonators and substrates for hybrid integrated circuits. J. Optoelectron. Adv. Mater. 2003, 5, 1395–1398. [Google Scholar]
- Genovesi, S.; Costa, F.; Cioni, B.; Miceli, V.; Annino, G.; Gallone, G.; Levita, G.; Lazzeri, A.; Monorchio, A.; Manara, G. Miniaturized high impedance surfaces with angular stability by using zirconium tin titanate substrates and convoluted FSS elements. Microw. Opt. Technol. Lett. 2009, 51, 2753–2758. [Google Scholar] [CrossRef]
- Chen, B.; Han, L.; Li, B.Y. Sintering characteristics and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics doped with La2O3 and MgO. J. Mater. Sci. Mater. Electron. 2019, 30, 2847–2853. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Bai, N.; Li, Z.; Wu, Q.; Yang, Z. Modification of (Zr0.8Sn0.2)TiO4 high-frequency dielectric ceramics doped with CuO-TiO2. J. Mater. Sci: Mater. Electron. 2021, 32, 4090–4096. [Google Scholar] [CrossRef]
- Groza, J.R.; Zavaliangos, A. Sintering activation by external electrical field. Mater. Sci. Eng. A 2000, 287, 171–177. [Google Scholar] [CrossRef]
- Grasso, S.; Sakka, Y.; Maizza, G. Electric current activated/assisted sintering (ECAS): A review of patents 1906–2008. Sci. Technol. Adv. Mater. 2009, 10, 053001. [Google Scholar] [CrossRef]
- Badica, P.; Crisan, A.; Aldica, G.; Endo, K.; Borodianska, H.; Togano, K.; Awaji, S.; Watanabe, K.; Sakka, Y.; Vasylkiv, O. ‘Beautiful’ unconventional synthesis and processing technologies of superconductors and some other materials. Sci. Technol. Adv. Mater. 2011, 12, 013001. [Google Scholar] [CrossRef] [Green Version]
- Anselmi-Tamburini, U.; Spinolo, G.; Maglia, F.; Tredici, I.; Holland, T.B.; Mukherjee, A.K. Field assisted sintering mechanisms. In Sintering: Mechanisms of Convention Nanodensification and Field Assisted Processes; Castro, R., Benthem, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 159–193. [Google Scholar]
- Maniere, C.; Nigito, E.; Durand, L.; Weibel, A.; Beynet, Y.; Estournes, C. Spark plasma sintering and complex shapes: The deformed interfaces approach. Powder Technol. 2017, 320, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Kakimoto, K.; Ohsato, H. Microwave dielectric properties of Ba6-3xSm8+2xTi18O54 (x=2/3) ceramics produced by spark plasma sintering. Jpn. J. Appl. Phys. 2003, 42, 7410–7413. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, S.; Ma, Q.; Shang, Z.; Liu, S. Sintering behavior and microwave properties of dense 0.7CaTiO3-0.3NdAlO3 ceramics with sub-micron sized grains by spark plasma sintering. Scr. Mater. 2016, 115, 80–83. [Google Scholar] [CrossRef]
- Liu, F.; Liu, S.; Cui, X.; Cheng, L.; Li, H.; Wang, J.; Rao, W. Ordered domains and microwave properties of sub-micron structured Ba(Zn1/3Ta2/3)O3 ceramics obtained by spark plasma sintering. Materials 2019, 12, 638. [Google Scholar] [CrossRef] [Green Version]
- Dolhen, M.; Carreaud, J.; Delaizir, G.; Duclere, J.-R.; Vandenhend, M.; Tessier-Doyen, N.; Tantot, O.; Passerieux, D.; Coulon, P.-E.; Thomas, P. New KNbTeO6 transparent tellurate ceramics. J. Eur. Ceram. Soc. 2020, 40, 4164–4170. [Google Scholar] [CrossRef]
- Ctibor, P.; Kubatik, T.; Sedlacek, J.; Kotlan, J. Spark Plasma Sintering of Dielectric Ceramics Zr0.8Sn0.2TiO4. Mater. Sci.-Medzg. 2016, 22, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Nedelcu, L.; Burdusel, M.; Grigoroscuta, M.A.; Geambasu, C.D.; Banciu, M.G.; Badica, P. Extrinsic absorption in spark plasma sintered Zr0.8Sn0.2TiO4 ceramics investigated by terahertz time-domain spectroscopy. In Proceedings of the 44th International Coference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 2–6 September 2019. [Google Scholar] [CrossRef]
- Nedelcu, L.; Geambasu, C.D.; Enculescu, M.; Banciu, M.G. Intrinsic Dielectric Loss in Zr0.8Sn0.2TiO4 ceramics investigated by terahertz time domain spectroscopy. Materials 2021, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Burdusel, M.; Aldica, G.; Popa, S.; Enculescu, M.; Pasuk, I.; Badica, P. MgB2 with addition of Bi2O3 obtained by spark plasma sintering technique. J. Supercond. Nov. Magn. 2013, 26, 1553–1556. [Google Scholar] [CrossRef]
- Nedelcu, L.; Annino, G.; Chirila, C.; Trupina, L.; Galca, A.C.; Banciu, M.G. Investigation of Ba0.6Sr0.4TiO3 thick films by means of a novel THz-TDS approach. Appl. Surf. Sci. 2020, 506, 144807. [Google Scholar] [CrossRef]
- Krupka, J.; Gregory, A.P.; Rochard, O.C.; Clarke, R.N.; Riddle, B.; Baker-Jarvis, J. Uncertainty of complex permittivity measurements by split-post dielectric resonator technique. J. Eur. Ceram. Soc. 2001, 21, 2673–2676. [Google Scholar] [CrossRef]
- Banciu, M.G.; Nedelcu, L.; Furuya, T.; Hrib, L.; Geambasu, D.C.; Trupina, L.; Pantelica, D.; Mihai, M.-D.; Tani, M. Experimental study of terahertz response from some ferroelectric and dielectric materials. Proc. Rom. Acad. Ser. A-Math. Phys. 2019, 20, 353–360. [Google Scholar]
- Tamura, H. Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.M. Frequency-dependent Qf value of microwave dielectric ceramics. J. Am. Ceram. Soc. 2014, 97, 3041–3043. [Google Scholar] [CrossRef]
- Kolodiazhnyi, T.; Annino, G.; Shimada, T. Intrisic limit of dielectric loss in several Ba(B′1∕3B′′2∕3)O3 ceramics revealed by the whispering gallery mode technique. Appl. Phys. Lett. 2005, 87, 212908. [Google Scholar] [CrossRef]
- Hirano, S.; Hayashi, T.; Hattori, A. Chemical processing and microwave characteristics of (Zr, Sn)TiO4 microwave dielectrics. J. Am. Ceram. Soc. 1991, 74, 1320–1324. [Google Scholar] [CrossRef]
- Kudesia, R.; McHale, A.E.; Snyder, R.L. Effect of La2O3/ZnO additives on microstructure and microwave dielectric properties of Zr0.8Sn0.2TiO4 ceramics. J. Am. Ceram. Soc. 1994, 77, 3215–3220. [Google Scholar] [CrossRef]
- Xiong, Z.X.; Huang, J.R.; Fang, C.; Pan, Z.Y. Hydrothermal synthesis of (Zr,Sn)TiO4 nano-powders for microwave ceramics. J. Eur. Ceram. Soc. 2003, 23, 2515–2518. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Weng, M.-H.; Dai, B.-T.; Wang, S.-S. Nano powder and microwave dielectric properties of sol–gel-derived Zr0.8Sn0.2TiO4 ceramics. Jpn. J. Appl. Phys. 2005, 44, 6152–6155. [Google Scholar] [CrossRef]
- Olhero, S.M.; Kaushal, A.; Ferreira, J.M.F. Fostering the properties of Zr0.8Sn0.2TiO4 (ZST) ceramics via freeze granulation without sintering additives. RSC Adv. 2014, 4, 48734–48740. [Google Scholar] [CrossRef]
Sample | Sintering Temperature (°C) | Bulk Density 1 (g/cm3) | Lattice Constants | ||
---|---|---|---|---|---|
a (nm) | b (nm) | c (nm) | |||
ZST A | 1150 | 4.97 | 0.4771 | 0.5512 | 0.5036 |
ZST B | 1200 | 5.17 | 0.4764 | 0.5505 | 0.5034 |
Sample | εr @ 16 GHz | tanδ @ 16 GHz | Q × f @ 16 GHz (THz) | εr @ 0.4 THz | tanδ @ 0.4 THz | Q × f @ 0.4 THz (THz) |
---|---|---|---|---|---|---|
ZST A | 36.1 | 4.6 × 10−4 | 35 | 36.4 | 7.3 × 10−3 | 55 |
ZST B | 38.9 | 3.2 × 10−4 | 50 | 39.3 | 6.7 × 10−3 | 60 |
Reference | Powder Synthesis Method | Sintering Temperature (°C) | Additives | εr | Q × f (THz) |
---|---|---|---|---|---|
[16] | CMO | 1360 | Fe2O3, ZnO, NiO | 38 | 39 |
[17] | CMO | 1380 | Ta2O5, ZnO, NiO | 38 | 60 |
[41] | MA | 1600 | - | 40.3 | 50 |
[42] | CP | 1325 | La2O3, ZnO | 37.6 | 54 |
[43] | HT | 1280 | - | 37.5 | 25 |
[44] | SG | 1300 | ZnO | 38 | 55 |
[45] | FG | 1400 | - | 38.2 | 57 |
[33] | CMO | 1300 | La2O3, ZnO | 37.3 | 50 |
This work (sample B) | CMO | 1200 | La2O3, ZnO | 38.9 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedelcu, L.; Burdusel, M.; Grigoroscuta, M.A.; Geambasu, C.D.; Enculescu, M.; Badica, P.; Banciu, M.G. Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr0.8Sn0.2TiO4 Ceramics. Materials 2022, 15, 1258. https://doi.org/10.3390/ma15031258
Nedelcu L, Burdusel M, Grigoroscuta MA, Geambasu CD, Enculescu M, Badica P, Banciu MG. Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr0.8Sn0.2TiO4 Ceramics. Materials. 2022; 15(3):1258. https://doi.org/10.3390/ma15031258
Chicago/Turabian StyleNedelcu, Liviu, Mihail Burdusel, Mihai Alexandru Grigoroscuta, Cezar Dragos Geambasu, Monica Enculescu, Petre Badica, and Marian Gabriel Banciu. 2022. "Microwave and Terahertz Properties of Spark-Plasma-Sintered Zr0.8Sn0.2TiO4 Ceramics" Materials 15, no. 3: 1258. https://doi.org/10.3390/ma15031258