Determination of Water Content in Direct Resin Composites Using Coulometric Karl Fischer Titration
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demarco, F.F.; Collares, K.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Should my composite restorations last forever? Why are they failing? Braz. Oral Res. 2017, 31, e56. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.J.; Kramer, E.J.; Meyer-Lueckel, H. Risk factors for failure of direct restorations in general dental practices. J. Dent. Res. 2020, 99, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Signori, C.; Gimenez, T.; Mendes, F.M.; Huysmans, M.D.; Opdam, N.J.; Cenci, M.S. Clinical relevance of studies on the visual and radiographic methods for detecting secondary caries lesions—A systematic review. J. Dent. 2018, 75, 22–33. [Google Scholar] [CrossRef]
- Moro, B.L.; Freitas, R.D.; Pontes, L.R.; Pássaro, A.L.; Lenzi, T.L.; Tedesco, T.K.; Ekstrand, K.R.; Braga, M.M.; Raggio, D.P.; Cenci, M.S.; et al. Influence of different clinical criteria on the decision to replace restorations in primary teeth. J. Dent. 2020, 101, 103421. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Collares, K.; Coelho-de-Souza, F.H.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Anterior composite restorations: A systematic review on long-term survival and reasons for failure. Dent. Mater. 2015, 31, 1214–1224. [Google Scholar] [CrossRef]
- Aydın, N.; Karaoğlanoğlu, S.; Oktay, E.A.; Kılıçarslan, M.A. Investigating the color changes on resin-based CAD/CAM Blocks. J. Esthet. Restor. Dent. 2020, 32, 251–256. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Ferracane, J.L. Factors involved in mechanical fatigue degradation of resin composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef]
- Klauer, E.; Belli, R.; Petschelt, A.; Lohbauer, U. Mechanical and hydrolytic degradation of an Ormocer®-based Bis-GMA-free resin composite. Clin. Oral Investig. 2019, 23, 2113–2121. [Google Scholar] [CrossRef]
- Nagano, D.; Nakajima, M.; Takahashi, M.; Ikeda, M.; Hosaka, K.; Sato, K.; Prasansuttiporn, T.; Foxton, R.M.; Tagami, J. Effect of water aging of adherend composite on repair bond strength of nanofilled composites. J. Adhes. Dent. 2018, 20, 425–433. [Google Scholar] [CrossRef]
- Fugolin, A.P.; de Paula, A.B.; Dobson, A.; Huynh, V.; Consani, R.; Ferracane, J.L.; Pfeifer, C.S. Alternative monomer for BisGMA-free resin composites formulations. Dent. Mater. 2020, 36, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Fugolin, A.P.; Lewis, S.; Logan., M.G.; Ferracane, J.L.; Pfeifer, C.S. Methacrylamide-methacrylate hybrid monomers for dental applications. Dent. Mater. 2020, 36, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Stenger, A.; Ripper, J.; Priewich, E.; Belli, R.; Lohbauer, U. Mechanical degradation of contemporary CAD/CAM resin composite materials after water ageing. Dent. Mater. 2021, 37, 1156–1167. [Google Scholar] [CrossRef] [PubMed]
- ISO 4049. Dentistry-Polymer-Based Filling, Restorative and Luting Materials. 2019. Available online: https://www.iso.org/standard/67596.html (accessed on 13 June 2022).
- Fan, X.J.; Lee, S.W.; Han, Q. Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron Reliab. 2009, 49, 861–871. [Google Scholar] [CrossRef]
- Aro, R.; Ben Ayoub, M.W.; Leito, I.; Georgin, E. Moisture in solids: Comparison between evolved water vapor and vaporization coulometric Karl Fischer methods. Int. J. Thermophys. 2020, 41, 113. [Google Scholar] [CrossRef]
- Faria-E-Silva, A.L.; Heckel, L.; Belli, R.; Lohbauer, U. Coulometric titration of water content and uptake in CAD/CAM chairside composites. Dent. Mater. 2022, 38, 789–796. [Google Scholar] [CrossRef]
- Hashemian, A.; Shahabi, S.; Behroozibakhsh, M.; Najafi, F.; Abdulrazzaq Jerri Al-Bakhakh, B.; Hajizamani, H. A modified TEGDMA-based resin infiltrant using polyurethane acrylate oligomer and remineralising nano-fillers with improved physical properties and remineralisation potential. J. Dent. 2021, 113, 103810. [Google Scholar] [CrossRef]
- Martim, G.C.; Kupfer, V.L.; Moisés, M.P.; dos Santos, A.; Buzzetti, P.H.M.; Rinaldi, A.W.; Rubira, A.F.; Girotto, E.M. Physical-chemical properties of dental composites and adhesives containing silane-modified SBA-15. J. Mech. Behav. Biomed. Mater. 2018, 80, 277–284. [Google Scholar] [CrossRef]
- Asopa, V.; Suresh, S.; Khandewal, M.; Sharma, V.; Asopa, S.S.; Kaira, L.S. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Sau J. Dent. Res. 2015, 6, 146–451. [Google Scholar] [CrossRef]
- Barnett, A.; Karnes, J.J.; Lu, J.; Major, D.R.; Oakdale, J.S.; Grew, K.N.; McClure, J.P.; Molinero, V. Exponential water uptake in ionomer membranes results from polymer plasticization. Macromolecules 2022, 55, 6762–6774. [Google Scholar] [CrossRef]
- Moraes, R.R.; de Souza Gonçalves, L.; Lancellotti, A.C.; Consani, S.; Correr-Sobrinho, L.; Sinhoreti, M.A. Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Operative Dentistry 2009, 34, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Chalykh, A.E.; Petrova, T.F.; Ponomarev, I.I. Water sorption by polyheteroarylenes. Polymers 2022, 14, 2255. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, R.E.; Lam, J.W.; Windust, A.; Grinberg, P.; Zeisler, R.; Oflaz, R.; Paul, R.L.; Lang, B.E.; Fagan, J.A.; Simard, B.; et al. Determination of moisture content of single-wall carbon nanotubes. Anal. Bioanal Chem. 2012, 402, 429–438. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aro, R.; Ayoub, M.W.B.; Leito, I.; Georgin, É.; Savanier, B. Calibration and uncertainty estimation for water content measurement in solids. Int. J. Thermophys. 2021, 42, 42. [Google Scholar] [CrossRef]
- ISO 15512:2019. Plastics—Determination of Water Content. 2019. Available online: https://www.iso.org/standard/73834.html (accessed on 13 June 2022).
- Gauthier, R.; Aboueillei, H.; Boussès, Y.; Brulat-Bouchard, N.; Colon, P.; Chenal, J.M.; Tillier, Y.; Grosgogeat, B. Experimental investigation of dental composites degradation after early water exposure. J. Biomech. Eng. 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Suiter, E.A.; Watson, L.E.; Tantbirojn, D.; Lou, J.S.; Versluis, A. Effective expansion: Balance between shrinkage and hygroscopic expansion. J. Dent. Res. 2016, 95, 543–549. [Google Scholar] [CrossRef]
Material (Manufacturer) | Fillers | Vol% Filler | Matrix Monomers |
---|---|---|---|
Clearfil Majesty Posterior (Kuraray Noritake Dental Inc., Okyama, Japan) | Glass-ceramic, alumina micro, and silica fillers. | 82 | Bis-GMA, TEGDMA, and hydrophobic aromatic dimethacrylate. |
Grandio SO (Voco, Cuxhaven, Germany) | Glass-ceramic fillers, and silicon dioxide nanoparticles. | 73 | Bis-GMA, Bis-EMA, and TEGDMA |
Filtek Supreme XTE (3M ESPE, St. Paul, MN, USA) | Silica and zirconia fillers, and aggregated zirconia/silica cluster filler. | 55.6 | Bis-GMA, UDMA, TEGDMA, and Bis-EMA. |
Storage Time | Material | ||
---|---|---|---|
Clearfil Majesty Posterior | Grandio SO | Filtek Supreme XT | |
Non-stored | 0.54 (0.02) Bd | 0.28 (0.00) Cd | 1.69 (0.05) Ae |
24 h | 0.65 (0.03) Bc | 0.44 (0.02) Cc | 2.21 (0.05) Ad |
48 h | 0.68 (0.01) Bc | 0.50 (0.02) Cc | 2.57 (0.08) Ac |
7 days | 0.79 (0.01) Bb | 0.62 (0.01) Cb | 2.86 (0.04) Ab |
21 days | 0.83 (0.03) Bab | 0.67 (0.02) Cab | 3.05 (0.05) Aa |
60 days | 0.90 (0.03) Ba | 0.72 (0.03) Ca | 3.07 (0.03) Aa |
Storage Time | Material | ||
---|---|---|---|
Clearfil Majesty Posterior | Grandio SO | Filtek Supreme XT | |
Non-stored | 13.16 (0.56) Bd | 5.62 (0.08) Cd | 31.22 (0.99) Ae |
24 h | 15.84 (0.75) Bc | 8.93 (0.35) Cc | 40.70 (0.86) Ad |
48 h | 16.50 (0.30) Bc | 10.12 (0.44) Cc | 47.41 (1.55) Ac |
7 days | 19.32 (0.27) Bb | 12.58 (0.28) Cb | 52.66 (0.76) Ab |
21 days | 20.24 (0.78) Bb | 13.54 (0.36) Cab | 56.11 (0.98) Aa |
60 days | 22.02 (0.74) Ba | 14.80 (0.82) Ca | 56.50 (0.52) Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria-e-Silva, A.; Heckel, L.; Belli, R.; Lohbauer, U. Determination of Water Content in Direct Resin Composites Using Coulometric Karl Fischer Titration. Materials 2022, 15, 8524. https://doi.org/10.3390/ma15238524
Faria-e-Silva A, Heckel L, Belli R, Lohbauer U. Determination of Water Content in Direct Resin Composites Using Coulometric Karl Fischer Titration. Materials. 2022; 15(23):8524. https://doi.org/10.3390/ma15238524
Chicago/Turabian StyleFaria-e-Silva, André, Lea Heckel, Renan Belli, and Ulrich Lohbauer. 2022. "Determination of Water Content in Direct Resin Composites Using Coulometric Karl Fischer Titration" Materials 15, no. 23: 8524. https://doi.org/10.3390/ma15238524
APA StyleFaria-e-Silva, A., Heckel, L., Belli, R., & Lohbauer, U. (2022). Determination of Water Content in Direct Resin Composites Using Coulometric Karl Fischer Titration. Materials, 15(23), 8524. https://doi.org/10.3390/ma15238524