Polycrystalline PbTe:In Films on Amorphous Substrate: Structure and Physical Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Properties
3.2. XRD
3.3. Seebeck Coefficient
3.4. Hall Coefficient and Energy Bands Diagram Reconstruction
3.5. Mobility
4. Discussion
- Scattering on the free surface;
- Scattering on crystalline boundaries;
- Scattering on defects and dislocations.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rogalski, A. Infrared detectors: Status and trends. Prog. Quantum Electron. 2003, 27, 59–210. [Google Scholar] [CrossRef]
- Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H. 4.5 µm wavelength vertical external cavity surface emitting laser operating above room temperature. Appl. Phys. Lett. 2009, 94, 201112. [Google Scholar] [CrossRef]
- Fill, M.; Debernardi, P.; Felder, F.; Zogg, H. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment. Appl. Phys. Lett. 2013, 103, 201120. [Google Scholar] [CrossRef]
- Barros, A.S.; Abramof, E.; Rappl, P.H.O. Electrical and optical properties of PbTe p-n junction infrared sensors. J. Appl. Phys. 2006, 99, 024904. [Google Scholar] [CrossRef]
- Yasuda, A.; Suto, K.; Takahashi, Y.; Nishizawa, J.-I. Mid-infrared photoconductive properties of heavily Bi-doped PbTe p-n homojunction diode grown by liquid-phase epitaxy. Infrared Phys. Technol. 2014, 67, 609–612. [Google Scholar] [CrossRef]
- Fill, M.; Felder, F.; Rahim, M.; Zogg, H.; Ishida, A. AIV-BVI mid-infrared VECSEL on Si-substrate. Proc. SPIE 2012, 8242, 0H-1–0H-11. [Google Scholar]
- Zogg, H.; Arnold, M.; Felder, F.; Rahim, M.; Ebneter, C.; Zasavitskiy, I.; Quack, N.; Blunier, S.; Dual, J. Epitaxial lead chalco-genides on Si for mid-IR detectors and emitters including cavities. J. Electron. Mater. 2008, 37, 1497–1503. [Google Scholar] [CrossRef]
- Gradauskas, J.; Dzundza, B.; Chernyak, L.; Dashevsky, Z. Two-color infrared sensors on the PbTe: In p-n junction. Sensors 2021, 21, 1195. [Google Scholar] [CrossRef] [PubMed]
- Jost, S. Identifying the physical mechanisms of polycrystalline lead salt photoconductors. J. Appl. Phys. 2022, 132, 064503. [Google Scholar] [CrossRef]
- Springholz, G. Molecular Beam Epitaxy of IV-VI Semiconductors, Low Dimensional Structures and Device Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 211–276. [Google Scholar] [CrossRef]
- Dashevsky, Z.; Belenchuk, A.; Gartstein, E.; Shapoval, O. PbTe films grown by hot wall epitaxy on sapphire substrates. Thin Solid Films 2004, 461, 256–265. [Google Scholar] [CrossRef]
- Shandalov, M.; Dashevsky, Z.; Golan, Y. Microstructure related transport phenomena in chemically deposited PbSe films. Mater. Chem. Phys. 2008, 112, 132–135. [Google Scholar] [CrossRef]
- Dzundza, B.; Nykyruy, L.; Parashchuk, T.; Ivakin, E.; Yavorsky, Y.; Chernyak, L.; Dashevsky, Z. Transport and thermoelectric performance of n-type PbTe films. Phys. B Condens. Matter 2020, 588, 412178. [Google Scholar] [CrossRef]
- Lalonge, A.D.; Pei, Y.; Wang, H.; Snyder, J. Lead telluride alloy thermoelectrics. Mater. Today 2011, 14, 526–532. [Google Scholar] [CrossRef]
- Dashevsky, Z.; Jarashneli, A.; Unigovski, Y.; Dzundza, B.; Gao, F.; Shneck, R.Z. Development of a High Performance Gas Thermoelectric Generator 3 (TEG) with Possible use of Waste Heat. Energies 2022, 15, 3960. [Google Scholar] [CrossRef]
- Goltsman, B.M.; Dashevskii, Z.M.; Kaidanov, V.I.; Kolomoets, N.V. Film Thermoelements: Physics and Application; Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Dariel, M.P.; Dashevsky, Z.; Jarashnely, A.; Shusterman, S.; Horowitz, A. Carrier concentration gradient generated in p-type PbTe crystals by unidirection solidification. J. Cryst. Growth 2002, 234, 164–170. [Google Scholar] [CrossRef]
- Humphrey, J.N.; Petritz, R.L. Photoconductivity in lead selenide: Theory of the mechanism of sensitization. Phys. Rev. 1957, 105, 1736–1740. [Google Scholar] [CrossRef]
- Atakulov, S.B.; Zaynolobidinova, S.M.; Nabiev, G.A.; Nabiyev, M.B.; Yuldashev, A.A. Theory of Transport Phenomena in Polycrystalline Lead Chalcogenide Films. Mobility. Nondegenerate Statistics. Semiconductors 2013, 47, 879–883. [Google Scholar] [CrossRef]
- Kaidanov, V.I.; Ravich, Y.I. Deep and resonance states in AIV BVI semiconductors. Sov. Phys. Uspekhi 1985, 28, 31–53. [Google Scholar] [CrossRef]
- Volkov, B.A.; Ryabova, L.I.; Khokhlov, D.P. Mixed-valence impurities in lead telluride-based solid solutions. Phys. Uspekhi 2002, 45, 819. [Google Scholar] [CrossRef]
- Kaidanov, V.I. Resonance (Quasilocal) States in AIVBVI Semiconductors. Defect Diffus. Forum 1993, 103–105, 387–406. [Google Scholar] [CrossRef]
- Ravich, Y.I.; Efimova, B.A.; Smirnov, I.A. Semiconducting Lead Chalcogenides; Plenum Press: New York, NY, USA, 1970. [Google Scholar]
- Parashchuk, T.; Dashevsky, Z.; Wojciechowski, K. Feasibility of a high stable PbTe: In semiconductor for thermoelectric energy applications. J. Appl. Phys. 2019, 125, 245103. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Parashchuk, T.; Wiendlocha, B.; Cherniushok, O.; Dashevsky, Z. Highly efficient n-type PbTe developed by advanced electronic structure engineering. J. Mater. Chem. C 2020, 38, 13270. [Google Scholar] [CrossRef]
- Park, S.-J.; Cho, K.-S.; Kim, S.-H. A study on dielectric characteristics of fluorinated polyimide thin film. J. Colloid Interface Sci. 2004, 272, 384. [Google Scholar] [CrossRef] [PubMed]
- Averkin, A.A.; Kaidanov, V.I.; Mel’nik, R.B. On the nature of impurity states of indium in-telluride lead. Fiz. Tekh. Poluprovodn. 1971, 5, 91–95. [Google Scholar]
- Skipetrov, P.; Golubev, A.V.; Dmitriev, N.N.; Slyn’ko, V.E. Chapter: Gallium-Induced Resonant States in Pb1−xSnxTe:Ga under Pressure; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Parashchuk, T.; Chernyak, L.; Nemov, S.; Dashevsky, Z. Influence of Deformation on Pb1−xInxTe1−yIy and Pb1−x−ySnxInyTe Films; PSS: London, UK, 2020; Volume 257, p. 2000304. [Google Scholar] [CrossRef]
- Kane, E.O. Band structure of indium antimonide. J. Phys. Chem. Solids 1957, 1, 249–261. [Google Scholar] [CrossRef]
- Cohen, M.H. Energy Bands in the Bismuth Structure. I. A Nonellipsoidal Model for Electrons in Bi. Phys. Rev. 1961, 121, 387–395. [Google Scholar] [CrossRef]
- Allgaier, R.S.; Scanlon, W.W. Mobility of Electrons and Holes in PbS, PbSe, and PbTe between Room Temperature and 4.2 K. Phys. Rev. 1958, 111, 1029. [Google Scholar] [CrossRef]
Composition | Thickness, d (µm) | Substrate Temperature, TS (K) | Average Grain Size (nm) | Mean Free Path at 10 K (nm) | Seebeck Coefficient S, (µV/K) |
---|---|---|---|---|---|
Pb0.99In0.01Te | 523 | 114 ± 11 | 6 | −160 | |
548 | 145 ± 20 | 9 | −150 | ||
2 ± 0.1 | 573 | 180 ± 30 | 11 | −160 | |
598 | 300 ± 35 | 18 | −150 | ||
638 | 510 ± 54 | 29 | −150 | ||
3 ± 0.2 | 598 | 586 ± 62 | 25 | −160 | |
4 ± 0.3 | 598 | 640 ± 70 | 44 | −150 | |
Pb0.995In0.005Te | 2 ± 0.1 | 573 | 180 ± 30 | 34 | −150 |
3 ± 0.2 | 623 | 641± 70 | 42 | −160 | |
Pb0.995In0.005Te (heat treatment) | 3 ± 0.2 | 623 | 656± 50 | 515 | −160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalyuk, V.; Sheveleva, E.; Auslender, M.; Goltsman, G.; Shneck, R.; Dashevsky, Z. Polycrystalline PbTe:In Films on Amorphous Substrate: Structure and Physical Properties. Materials 2022, 15, 8383. https://doi.org/10.3390/ma15238383
Kovalyuk V, Sheveleva E, Auslender M, Goltsman G, Shneck R, Dashevsky Z. Polycrystalline PbTe:In Films on Amorphous Substrate: Structure and Physical Properties. Materials. 2022; 15(23):8383. https://doi.org/10.3390/ma15238383
Chicago/Turabian StyleKovalyuk, Vadim, Evgeniia Sheveleva, Mark Auslender, Gregory Goltsman, Roni Shneck, and Zinovi Dashevsky. 2022. "Polycrystalline PbTe:In Films on Amorphous Substrate: Structure and Physical Properties" Materials 15, no. 23: 8383. https://doi.org/10.3390/ma15238383
APA StyleKovalyuk, V., Sheveleva, E., Auslender, M., Goltsman, G., Shneck, R., & Dashevsky, Z. (2022). Polycrystalline PbTe:In Films on Amorphous Substrate: Structure and Physical Properties. Materials, 15(23), 8383. https://doi.org/10.3390/ma15238383