Y-TZP Physicochemical Properties Conditioned with ZrO2 and SiO2 Nanofilms and Bond Strength to Dual Resin Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Part 1—Surface Treatments and Shear Bond Strength
2.1.1. Wettability and Surface Free Energy
2.1.2. X-ray Diffraction (XRD)
2.1.3. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR)
2.1.4. Roughness
2.1.5. Shear Bond Test
2.2. Part 2: Dynamic Modulus
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Lee, J.J.; Srikanth, R.; Lawn, B.R. Edge chipping and flexural resistance of monolithic ceramics. Dent. Mater. 2013, 29, 1201–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, N.C.; Burgess, J.O. Dental ceramics: A current review. Compend Contin. Educ. Dent. 2014, 35, 161–166. [Google Scholar] [PubMed]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardin, V.P.; de Paula, V.G.; Bonfante, E.A.; Coelho, P.G.; Bonfante, G. Lifetime prediction of zirconia and metal ceramic crowns loaded on marginal ridges. Dent. Mater. 2016, 32, 13–54. [Google Scholar] [CrossRef] [PubMed]
- Malkondu, Ö.; Tinastepe, N.; Akan, E.; Kazazoğlu, E. An overview of monolithic zirconia in dentistry. Biotechnol. Biotechnol. Equip. 2016, 30, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Özkurt-Kayahan, Z. Monolithic zirconia: A review of the literature. Biomed. Res. 2016, 27, 1427–1436. [Google Scholar]
- Lima, R.B.W.; Barreto, S.C.; Alfrisany, N.M.; Porto, T.S.; Souza, G.M.; Goes, M.F. Effect of silane and MDP-based primers on the physico-chemical properties of zirconia and its bond strength to resin cement. Dent. Mater. 2019, 35, 1557–1567. [Google Scholar] [CrossRef]
- Bertolini, M.M.; Kempen, J.; Lourenço, E.J.; Telles, D.M. The use of CAD/CAM technology to fabricate a custom ceramic implant abutment: A clinical report. J. Prosthet. Dent. 2014, 111, 362–366. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, S.; Lai, R.; Liu, R.; Ma, S.; Zhou, Z.; Longquan, S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J. Mech. Behav. Biomed. Mater. 2014, 35, 93–101. [Google Scholar] [CrossRef]
- Kumar, Y.; Jain, V.; Chauhan, S.S.; Bharate, V.; Koli, D.; Kumar, M. Influence of different forms and materials (zirconia or titanium) of abutments in periimplant soft-tissue healing using matrix metalloproteinase-8: A randomized pilot study. J. Prosthet. Dent. 2017, 118, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.S.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to zirconia: A systematic review of current conditioning methods and bonding materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuer, F.; Korczynski, N.; Rezac, A.; Naumann, M.; Gernet, W.; Sorensen, J.A. Marginal and internal fit of zirconia based fixed dental prostheses fabricated with different concepts. Clin. Cosmet. Investig. Dent. 2010, 25, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandparsa, R.; Talua, N.A.; Finkelman, M.D.; Schaus, S.E. An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments. J. Prosthodont. 2014, 23, 117–123. [Google Scholar] [CrossRef]
- Amaral, M.; Cesar, P.F.; Bottino, M.A.; Lohbauer, U.; Valandro, L.F. Fatigue behavior of Y-TZP ceramic after surface treatments. J. Mech. Behav. Biomed. Mater. 2016, 57, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Koenig, V.; Wulfman, C.P.; Derbanne, M.A.; Dupont, N.M.; Le Goff, S.O.; Tang, M.L.; Seidel, L.; Dewael, T.Y.; Vanheusden, A.J.; Mainjot, A.K. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses. Contemp. Clin. Trials Communic. 2016, 4, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Y.; Lu, Z.; Qian, M.; Xie, H.; Tay, F.R. The effects of water on degradation of the zirconia-resin bond. J. Dent. 2017, 64, 23–29. [Google Scholar] [CrossRef]
- Elshiyab, S.H.; Nawafleh, N.; George, R. Survival and testing parameters of zirconia-based crowns under cyclic loading in an aqueous environment: A systematic review. J. Investig. Clin. Dent. 2017, 8, e12261. [Google Scholar] [CrossRef]
- Lee, J.J.; Choi, J.Y.; Seo, J.M. Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. J. Adv. Prosthodont. 2017, 9, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.; Rippe, M.; Oliveira, B.G.; Cesar, P.F.; Bottino, M.A.; Valandro, L.F. Evaluation of tensile retention of Y-TZP crowns after long-term aging: Effect of the core substrate and crown surface conditioning. Oper. Dent. 2014, 39, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar] [PubMed]
- Abi-Rached, F.O.; Martins, S.B.; Campos, J.A.; Fonseca, R.G. Evaluation of roughness, wettability, and morphology of a yttria-stabilized tetragonal zirconia polycrystal ceramic after different airborne-particle abrasion protocols. J. Prosthet. Dent. 2014, 112, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Gamal, A.; Medioni, E.; Rocca, J.P.; Fornaini, C.; Muhammad, O.H.; Brulat-Bouchard, N. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces. Lasers Med. Sci. 2017, 32, 779–785. [Google Scholar] [CrossRef]
- Fonseca, R.G.; Abi-Rached, F.O.; Reis, J.M.S.N.; Rambaldi, E.; Baldissara, P. Effect of particle size on the flexural strength and phase transformation of an airborne-particle abraded yttria-stabilized tetragonal zirconia polycrystal ceramic. J. Prosthet. Dent. 2013, 110, 510–514. [Google Scholar] [CrossRef]
- Özcan, M.; Raadschelders, J.; Vallittu, P.; Lassilla, L. Effect of particle deposition parameters on silica coating of zirconia using a chairside air-abrasion device. J. Adhes. Dent. 2013, 15, 211–214. [Google Scholar]
- Turp, V.; Sen, D.; Tuncelli, B.; Goller, G.; Ozcan, M. Evaluation of air-particle abrasion of Y-TZP with different particles using microstructural analysis. Aust. Dent. J. 2013, 58, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Papia, E.; Larsson, C.; du Toit, M.; Steyern, P.V. Bonding between oxide ceramics and adhesive cement systems: A systematic review. J. Biomed. Mat. Res. B Appl. Biomater. 2014, 102, 395–413. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Vallittu, P.K. Bonding of resin composites to etchable ceramic surfaces—An insight review of the chemical aspects on surface conditioning. J. Oral Rehabil. 2007, 34, 622–630. [Google Scholar] [CrossRef]
- Song, J.Y.; Park, S.W.; Lee, K.; Yun, K.D.; Lim, H.P. Fracture strength and microstructure of Y-TZP zirconia after different surface treatments. J. Prosthet. Dent. 2013, 110, 274–280. [Google Scholar] [CrossRef]
- Chintapalli, R.K.; Rodrigueza, A.M.; Marro, F.G.; Anglada, M. Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J. Mec. Behav. Biom. Mater. 2014, 29, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Sriamporn, T.; Thamrongananskul, N.; Busabok, C.; Poolthong, S.; Uo, M.; Tagami, J. Dental zirconia can be etched by hydrofluoric acid. Dent. Mater. J. 2014, 33, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, C.; Dai, W.; Chen, G.; Zhang, F. In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning etching and primer conditioning. Dent. Mater. J. 2013, 32, 928–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menani, L.R.; Farhat, I.A.; Tiossi, R.; Ribeiro, R.F.; Guastaldi, A.C. Effect of surface treatment on the bond strength between yttria partially stabilized zirconia ceramics and resin cement. J. Prosthet. Dent. 2014, 112, 357–364. [Google Scholar] [CrossRef]
- Lee, M.H.; Son, J.S.; Kim, K.H.; Kwon, T.Y. Improved Resin–Zirconia Bonding by Room Temperature Hydrofluoric Acid Etching. Materials 2015, 8, 850–866. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Kim, S.J.; Shim, J.S.; Lee, K.W. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements. J. Adv. Prosthodont. 2017, 9, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.-K.; Lim, M.-J.; Na, N.-R.; Lee, K.-W. Effect of hydrofluoric acid-based etchant at an elevated temperature on the bond strength and surface topography of Y-TZP ceramics. Restor. Dent. Endod. 2020, 45, e6. [Google Scholar] [CrossRef]
- Kim, H.-E.; Lim, M.-J.; Yu, M.-K.; Lee, K.-W. Changes in bond strength and topography for Y-TZP etched with hydrofluoric acid depending on concentration and temperature conditions. Medicina 2020, 56, 568. [Google Scholar] [CrossRef]
- Shin, Y.J.; Shin, Y.; Yi, Y.A.; Kim, J.; Lee, I.B.; Cho, B.H.; Son, S.H.; Seo, D.G. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. Scanning 2014, 36, 479–486. [Google Scholar] [CrossRef]
- Negreiros, W.M.; Ambrosano, G.M.B.; Giannini, M. Effect of cleaning agent, primer application and their combination on the bond strength of a resin cement to two yttrium-tetragonal zirconia polycrystal zirconia ceramics. Eur. J. Dent. 2017, 11, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Baldissara, P.; Querze, M.; Monaco, C.; Scotti, R.; Fonseca, R.G. Efficacy of surface treatments on the bond strength of resin cements to two brands of zirconia ceramic. J. Adhes. Dent. 2013, 15, 259–267. [Google Scholar] [PubMed]
- Bottino, M.; Bergoli, C.; Lima, E.; Marocho, S.; Souza, R.; Valandro, L. Bonding of Y-TZP to Dentin: Effects of Y-TZP Surface Conditioning, Resin Cement Type, and Aging. Oper. Dent. 2014, 39, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Valente, F.; Mavriqi, L.; Traini, T. Effects of 10-MDP based primer on shear bond strength between zirconia and new experimental resin cement. Materials 2020, 13, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Hou, X.; Gao, J.; Bao, P.; Shen, J. Effects of MDP-based primers on shear bond strength between resin cement and zirconia. Exp. Ther. Med. 2019, 17, 3564–3572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druck, C.C.; Pozzobon, J.L.; Callegari, G.L.; Dorneles, L.S.; Valandro, L.F. Adhesion to Y-TZP ceramic: Study of silica nanofilm coating on the surface of Y-TZP. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 143–150. [Google Scholar] [CrossRef]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Iwasaki, T.; Komine, F.; Fushiki, R.; Kubochi, K.; Shinohara, M.; Matsumura, H. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material. Dent. Mater. J. 2016, 35, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zheng, Y.; Zhang, J.-F.; Ou, X.; Gao, X.; Zhang, B.; Cao, Y. The effect of adhesive surface with porcelain sintering and to silane coupling agents on the adhesive properties of zirconia. Ann. Transl. Med. 2022, 10, 87. [Google Scholar] [CrossRef]
- Dantas, T.S.; Rodrigues, R.C.S.; Naves, L.Z.; Faria, A.C.L.; Palma-Dibb, R.G.; Ribeiro, R.F. Effects of surface treatments on mechanical behavior of sintered and pre-sintered yttria-stabilized zirconia and reliability of crowns and abutments processed by CAD/CAM. Int. J. Oral Maxillofac. Implant. 2019, 34, 907–919. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Tamada, Y.; Yoshida, Y.; Van Meerbek, B. Ultrastructure and bonding properties of tribochemical silica-coated zirconia. Dent. Mater. J. 2019, 38, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-S.; Ahn, J.-J.; Bae, E.-B.; Kim, G.-C.; Jeong, C.-M.; Huh, J.-B.; Lee, S.-H. Influence of non-thermal atmospheric pressure plasma treatment on shear bond strength between Y-TZP and self-adhesiva resin cement. Materials 2019, 12, 3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.-J.; Kim, D.-S.; Bae, E.-B.; Kim, G.-C.; Jeong, C.-M.; Huh, J.-B.; Lee, S.-H. Effect of non-thermal atmospheric pressure plasma (NTP) and zirconia primer treatment on shear bond strength between Y-TZP and resin cement. Materials 2020, 13, 3934. [Google Scholar] [CrossRef] [PubMed]
- Zens, M.A.; Icochea, A.L.; Costa, B.C.; Lisboa-Filho, P.N.; Bastos, N.A.; Francisconi, P.A.S.; Furuse, A.Y.; Foschini, C.; Gerlin Neto, V.; Borges, A.F.S. A new approach for Y-TZP surface treatment: Evaluations of roughness and bond strength to resin cement. J. Appl. Oral Sci. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- Husain, N.A.; Özcan, M. A Study on Topographical Properties and Surface Wettability of Monolithic Zirconia after Use of Diverse Polishing Instruments with Different Surface Coatings. J. Prosthodont. 2018, 27, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Miragaya, L.; Maia, L.C.; Sabrosa, C.E.; de Goes, M.F.; da Silva, E.M. Evaluation of self-adhesive resin cement bond strength to yttria-stabilized zirconia ceramic (Y-TZP) using four surface treatments. J. Adhes. Dent. 2011, 13, 473–480. [Google Scholar] [PubMed]
- Keul, C.; Liebermann, A.; Roos, M.; Uhrenbacher, J.; Stawarczyk, B.; Ing, D. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia: A function of water storage and thermal cycling. J. Am. Dent. Assoc. 2013, 144, 1261–1271. [Google Scholar] [CrossRef]
- Lung, C.Y.; Kukk, E.; Matinlinna, J.P. The effect of silica-coating by sol-gel process on resin-zirconia bonding. Dent. Mater. J. 2013, 32, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Tsoi, J.K.H.; Chen, Z.; Zhang, Y.; Matinlinna, J.P. Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent Mater. 2018, 34, 272–281. [Google Scholar] [CrossRef]
- Munro, T.; Miller, C.M.; Antunes, E.; Sharma, D. Interactions of osteoprogenitor cells with a novel zirconia implant surface. J. Funct. Biomater. 2020, 11, 50. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Powder Diffraction File (PDF). International Centre for Diffraction Data (ICDD) Newtown Square; Powder Diffraction File (PDF): Newtown Square, PA, USA, 2001. [Google Scholar]
- Sartoretto, S.C.; Alves, A.T.N.N.; Resende, R.F.B.; Calasans-Maia, J.; Granjeiro, J.M.; Calasans-Maia, M.D. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. 2015, 23, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.C.; Celik, E. The effect of different cleaning agents and resin cement materials on the bond strength of contaminated zirconia. Microsc. Res. Tech. 2022, 85, 840–847. [Google Scholar] [CrossRef]
- Akar, T.; Dündar, A.; Kırmalı, Ö.; Üstün, Ö.; Kapdan, A.; Er, H.; Kuştarcı, A.; Er, K.; Yilmaz, B. Evaluation of the shear bond strength of zirconia to a self-adhesive resin cement after different surface treatment. Dent. Med. Probl. 2021, 58, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-K.; Oh, E.-J.; Lim, M.-J.; Lee, K.-W. Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching. Restor. Dent. Endod. 2021, 46, e554. [Google Scholar] [CrossRef] [PubMed]
- ISO/TR 11405:1994; Dental Materials—Guidance on Testing of Adhesion to Tooth Structure. International Organization for Standardization: Geneva, Switzerland, 1994; pp. 1–14.
- Salahouelhadj, A.; Haddadi, H. Estimation of the size of the RVE for isotropic copper polycrystals by using elastic–plastic finite element homogenization. Comput. Mater. Sci. 2010, 48, 447–455. [Google Scholar] [CrossRef]
- ASTM E1876:2015; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus and Possion’s Ratio by Impulse Excitation of Vibration. ASTM International: West Conshohocken, PA, USA, 2015.
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prost. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef]
Groups | Contact Angle θa (°) | Surface Free Energy γS (mJ.m−2) | Polar Component γSp (mJ.m−2) | Dispersive Component γSd (mJ.m−2) |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Control | <3.0 | 71.89 (0.32) A | 45.66 (4.61) A | 26.23 (4.88) A |
HF | 56.0 (12.0) A | 52.66 (6.83) B | 20.71 (5.46) B | 31.95 (2.1) B |
HF/ Silicatization | <3.0 | 71.89 (0.31) A | 45.66 (4.61) A | 26.23 (4.88) A |
ZrO2 | 28.5 (5.0) B | 68.05 (0.7) BC | 37.86 (0.36) BC | 29.81 (0.37) AB |
SiO2/Silane | 13.0 (2.0) B | 69.68 (0.2) AC | 42.76 (1.07) AC | 26.91 (1.03) A |
SiO2+ZrO2 | 25.3 (3.0) AB | 63.77 (5.33) BC | 35.67 (2.84) BC | 31.39 (4.58) B |
Groups | Presintering | After Sintering | After Treatment |
---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | |
Control | 1.72 (0.37) Aa | 2.40 (0.32) Ab | 2.09 (0.12) Ab |
HF | 1.71 (0.39) Aa | 2.70 (0.49) Ab | 2.18 (0.19) Ab |
HF/silicatization | 1.76 (0.55) Aa | 2.59 (0.60) Ab | 1.81 (0.10) Ac |
ZrO2 | 2.57 (0.49) Aa | 3.29 (0.22) Ab | 5.20 (0.27) Bc |
SiO2/Silane | 2.08 (0.61) Aa | 3.25 (0.77) Ab | 7.08 (0.85) Cc |
SiO2+ZrO2 | 2.10 (0.51) Aa | 3.08 (0.59) Ab | 4.29 (0.90) Dc |
SiO2+ZrO2/Silane | 2.06 (0.60) Aa | 2.97 (0.30) Ab | 6.19 (0.69) Ec |
Groups | Mean (SD) |
---|---|
Control | 13.49 (3.80) A |
HF | 7.62 (2.74) BC |
HF/silicatization | 9.14 (2.41) AB |
ZrO2 | 4.25 (0.3) C |
SiO2/Silane | 10.36 (3.55) AB |
SiO2+ZrO2 | 7.21 (2.62) BC |
SiO2+ZrO2/Silane | 10.44 (4.96) AB |
Groups | Dynamic Modulus (GPa) | ||
---|---|---|---|
Presintering | After Sintering | After Treatment | |
Mean (SD) | Mean (SD) | Mean (SD) | |
Control | 16.40 (0.27) Aa | 208.07 (3.90) Ab | 205.26 (3.56) Ab |
HF | 16.62 (0.47) Aa | 210.45 (7.24) Ab | 213.10 (8.41) Ab |
HF/ Silicatization | 16.62 (0.66) Aa | 207.29 (11.16) Ab | 209.36 (3.85) Ab |
ZrO2 | 16.98 (0.35) Aa | 216.85 (1.82) Ab | 211.67 (3.38) Ab |
SiO2/Silane | 16.99 (0.25) Aa | 213.69 (3.55) Ab | 206.13 (7.12) Ab |
SiO2+ZrO2 | 17.20 (0.22) Aa | 212.78 (3.55) Ab | 207.96 (4.16) Ab |
SiO2+ZrO2/Silane | 16.74 (0.40) Aa | 214.26 (1.47) Ab | 206.98 (0.97) Ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, R.F.; Oliveira, D.F.; Tovani, C.B.; Ramos, A.P.; Borges, A.F.S.; Faria, A.C.L.; Almeida, R.P.d.; Rodrigues, R.C.S. Y-TZP Physicochemical Properties Conditioned with ZrO2 and SiO2 Nanofilms and Bond Strength to Dual Resin Cement. Materials 2022, 15, 7905. https://doi.org/10.3390/ma15227905
Ribeiro RF, Oliveira DF, Tovani CB, Ramos AP, Borges AFS, Faria ACL, Almeida RPd, Rodrigues RCS. Y-TZP Physicochemical Properties Conditioned with ZrO2 and SiO2 Nanofilms and Bond Strength to Dual Resin Cement. Materials. 2022; 15(22):7905. https://doi.org/10.3390/ma15227905
Chicago/Turabian StyleRibeiro, Ricardo Faria, Danilo Flamini Oliveira, Camila Bussola Tovani, Ana Paula Ramos, Ana Flavia Sanches Borges, Adriana Claudia Lapria Faria, Rossana Pereira de Almeida, and Renata Cristina Silveira Rodrigues. 2022. "Y-TZP Physicochemical Properties Conditioned with ZrO2 and SiO2 Nanofilms and Bond Strength to Dual Resin Cement" Materials 15, no. 22: 7905. https://doi.org/10.3390/ma15227905
APA StyleRibeiro, R. F., Oliveira, D. F., Tovani, C. B., Ramos, A. P., Borges, A. F. S., Faria, A. C. L., Almeida, R. P. d., & Rodrigues, R. C. S. (2022). Y-TZP Physicochemical Properties Conditioned with ZrO2 and SiO2 Nanofilms and Bond Strength to Dual Resin Cement. Materials, 15(22), 7905. https://doi.org/10.3390/ma15227905