Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO2 Nanowire Arrays on Nanoimprinted Si Substrates
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Jeong, Y.-G.; Han, S.; Rhie, J.; Kyoung, J.-S.; Choi, J.-W.; Park, N.; Hong, S.; Kim, B.-J.; Kim, H.-T.; Kim, D.-S. A Vanadium Dioxide Metamaterial Disengaged from Insulator-to-Metal Transition. Nano Lett. 2015, 15, 6318–6323. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; Badloe, T.; Rho, J. Vanadium Dioxide for Dynamically Tunable Photonics. ChemNanoMat 2021, 7, 713–727. [Google Scholar] [CrossRef]
- Lu, H.; Clark, S.; Guo, Y.; Robertson, J. The Metal–Insulator Phase Change in Vanadium Dioxide and Its Applications. J. Appl. Phys. 2021, 129, 240902. [Google Scholar] [CrossRef]
- Kana Kana, J.B.; Ndjaka, J.M.; Vignaud, G.; Gibaud, A.; Maaza, M. Thermally Tunable Optical Constants of Vanadium Dioxide Thin Films Measured by Spectroscopic Ellipsometry. Opt. Commun. 2011, 284, 807–812. [Google Scholar] [CrossRef]
- Sun, J.; Pribil, G.K. Analyzing Optical Properties of Thin Vanadium Oxide Films through Semiconductor-to-Metal Phase Transition Using Spectroscopic Ellipsometry. Appl. Surf. Sci. 2017, 421, 819–823. [Google Scholar] [CrossRef]
- Schlag, H.J.; Scherber, W. New Sputter Process for VO2 Thin Films and Examination with MIS-Elements and C–V-Measurements. Thin Solid Films 2000, 366, 28–31. [Google Scholar] [CrossRef]
- Kucharczyk, D.; Niklewski, T. Accurate X-Ray Determination of the Lattice Parameters and the Thermal Expansion Coefficients of VO 2 near the Transition Temperature. J. Appl. Crystallogr. 1979, 12, 370–373. [Google Scholar] [CrossRef]
- Rini, M.; Hao, Z.; Schoenlein, R.W.; Giannetti, C.; Parmigiani, F.; Fourmaux, S.; Kieffer, J.C.; Fujimori, A.; Onoda, M.; Wall, S.; et al. Optical Switching in VO2 Films by Below-Gap Excitation. Appl. Phys. Lett. 2008, 92, 181904. [Google Scholar] [CrossRef]
- Jager, M.F.; Ott, C.; Kraus, P.M.; Kaplan, C.J.; Pouse, W.; Marvel, R.E.; Haglund, R.F.; Neumark, D.M.; Leone, S.R. Tracking the Insulator-to-Metal Phase Transition in VO 2 with Few-Femtosecond Extreme UV Transient Absorption Spectroscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 9558–9563. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, N.; Xie, W. Research Progress on the Preparation Methods for VO2 Nanoparticles and Their Application in Smart Windows. CrystEngComm 2020, 22, 851–869. [Google Scholar] [CrossRef]
- Makarevich, A.; Makarevich, O.; Ivanov, A.; Sharovarov, D.; Eliseev, A.; Amelichev, V.; Boytsova, O.; Gorodetsky, A.; Navarro-Cía, M.; Kaul, A. Hydrothermal Epitaxy Growth of Self-Organized Vanadium Dioxide 3D Structures with Metal–Insulator Transition and THz Transmission Switch Properties. CrystEngComm 2020, 22, 2612–2620. [Google Scholar] [CrossRef]
- Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J.W.L.; Khanal, D.R.; Ogletree, D.F.; Grossman, J.C.; et al. Strain Engineering and One-Dimensional Organization of Metal–Insulator Domains in Single-Crystal Vanadium Dioxide Beams. Nat. Nanotechnol. 2009, 4, 732–737. [Google Scholar] [CrossRef]
- Kim, H.-T.; Chae, B.-G.; Youn, D.-H.; Maeng, S.-L.; Kim, G.; Kang, K.-Y.; Lim, Y.-S. Mechanism and Observation of Mott Transition in VO2 -Based Two- and Three-Terminal Devices. New J. Phys. 2004, 6, 52. [Google Scholar] [CrossRef]
- Belyaev, M.A.; Velichko, A.A.; Boriskov, P.P.; Kuldin, N.A.; Putrolaynen, V.V.; Stefanovitch, G.B. The Field Effect and Mott Transistor Based on Vanadium Dioxide. J. Sel. Top. Nano Electron. Comput. 2014, 1, 26–30. [Google Scholar] [CrossRef]
- Demirkol, A.S.; Ascoli, A.; Messaris, I.; Tetzlaff, R. Pattern Formation Dynamics in a Memristor Cellular Nonlinear Network Structure with a Numerically Stable VO 2 Memristor Model. Jpn. J. Appl. Phys. 2022, 61, SM0807. [Google Scholar] [CrossRef]
- Fang, S.L.; Han, C.Y.; Liu, W.; Han, Z.R.; Ma, B.; Cui, Y.L.; Fan, S.Q.; Li, X.; Wang, X.L.; Zhang, G.H.; et al. A Bioinspired Flexible Artificial Mechanoreceptor Based on VO2 Insulator-Metal Transition Memristor. J. Alloys Compd. 2022, 911, 165096. [Google Scholar] [CrossRef]
- Han, C.Y.; Han, Z.R.; Fang, S.L.; Fan, S.Q.; Yin, J.Q.; Liu, W.H.; Li, X.; Yang, S.Q.; Zhang, G.H.; Wang, X.L.; et al. Characterization and Modelling of Flexible VO 2 Mott Memristor for the Artificial Spiking Warm Receptor. Adv. Mater. Interfaces 2022, 9, 2200394. [Google Scholar] [CrossRef]
- Mounasamy, V.; Mani, G.K.; Madanagurusamy, S. Vanadium Oxide Nanostructures for Chemiresistive Gas and Vapour Sensing: A Review on State of the Art. Microchim. Acta 2020, 187, 253. [Google Scholar] [CrossRef]
- Liao, F.; Zhu, Z.; Yan, Z.; Yao, G.; Huang, Z.; Gao, M.; Pan, T.; Zhang, Y.; Li, Q.; Feng, X.; et al. Ultrafast Response Flexible Breath Sensor Based on Vanadium Dioxide. J. Breath Res. 2017, 11, 036002. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, C.; Cheng, Z.; Wang, K.; Ramesh, R.; Wu, J. Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs. Nano Lett. 2012, 12, 6302–6308. [Google Scholar] [CrossRef] [PubMed]
- Tselev, A.; Budai, J.D.; Strelcov, E.; Tischler, J.Z.; Kolmakov, A.; Kalinin, S.V. Electromechanical Actuation and Current-Induced Metastable States in Suspended Single-Crystalline VO2 Nanoplatelets. Nano Lett. 2011, 11, 3065–3073. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, C.; Cardona, E.; Guan, J.; Liu, K.; Wu, J. Performance Limits of Microactuation with Vanadium Dioxide as a Solid Engine. ACS Nano 2013, 7, 2266–2272. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, J. Strain Effects in Low-Dimensional Transition Metal Oxides. Mater. Sci. Eng. R Rep. 2011, 71, 35–52. [Google Scholar] [CrossRef]
- Liu, T.-J.K.; Kuhn, K. CMOS and Beyond; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781107337886. [Google Scholar]
- Mun, B.S.; Chen, K.; Yoon, J.; Dejoie, C.; Tamura, N.; Kunz, M.; Liu, Z.; Grass, M.E.; Mo, S.-K.; Park, C.; et al. Nonpercolative Metal-Insulator Transition in VO2 Single Crystals. Phys. Rev. B 2011, 84, 113109. [Google Scholar] [CrossRef]
- Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh, J.; Liu, K.; Wu, J. Axially Engineered Metal–Insulator Phase Transition by Graded Doping VO 2 Nanowires. J. Am. Chem. Soc. 2013, 135, 4850–4855. [Google Scholar] [CrossRef]
- Baik, J.M.; Kim, M.H.; Larson, C.; Yavuz, C.T.; Stucky, G.D.; Wodtke, A.M.; Moskovits, M. Pd-Sensitized Single Vanadium Oxide Nanowires: Highly Responsive Hydrogen Sensing Based on the Metal−Insulator Transition. Nano Lett. 2009, 9, 3980–3984. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, W.; Cao, J.; Ryu, S.-G.; Ji, J.; Grigoropoulos, C.P.; Wu, J. Heat Transfer across the Interface between Nanoscale Solids and Gas. ACS Nano 2011, 5, 10102–10107. [Google Scholar] [CrossRef]
- Hu, B.; Ding, Y.; Chen, W.; Kulkarni, D.; Shen, Y.; Tsukruk, V.V.; Wang, Z.L. External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor. Adv. Mater. 2010, 22, 5134–5139. [Google Scholar] [CrossRef]
- Shi, R.; Wang, J.; Cai, X.; Zhang, L.; Chen, P.; Liu, S.; Zhang, L.; Ouyang, W.; Wang, N.; Cheng, C. Axial Modulation of Metal–Insulator Phase Transition of VO2 Nanowires by Graded Doping Engineering for Optically Readable Thermometers. J. Phys. Chem. C 2017, 121, 24877–24885. [Google Scholar] [CrossRef]
- Singh, D.; Viswanath, B. In Situ Nanomechanical Behaviour of Coexisting Insulating and Metallic Domains in VO2 Microbeams. J. Mater. Sci. 2017, 52, 5589–5599. [Google Scholar] [CrossRef]
- Fisher, B.; Patlagan, L. Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation. Materials 2017, 10, 554. [Google Scholar] [CrossRef]
- Singh, D.; Viswanath, B. Direct Measurement of Nanomechanical Actuation across Phase Transition in VO2 Crystals. Scr. Mater. 2017, 141, 24–27. [Google Scholar] [CrossRef]
- Sohn, J.I.; Joo, H.J.; Porter, A.E.; Choi, C.-J.; Kim, K.; Kang, D.J.; Welland, M.E. Direct Observation of the Structural Component of the Metal−Insulator Phase Transition and Growth Habits of Epitaxially Grown VO2 Nanowires. Nano Lett. 2007, 7, 1570–1574. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Chen, Z.; Cai, Z.; Zhou, H.; Lu, T.-M.; Shi, J. Defect-Engineered Epitaxial VO2±δ in Strain Engineering of Heterogeneous Soft Crystals. Sci. Adv. 2018, 4, eaar3679. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, H.; Chen, Z.; Cao, M.; Chen, P.; Dou, Y.; Zhao, Y.; Li, J. Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale. Chem. Mater. 2015, 27, 7419–7424. [Google Scholar] [CrossRef]
- Cheng, C.; Guo, H.; Amini, A.; Liu, K.; Fu, D.; Zou, J.; Song, H. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires. Sci. Rep. 2015, 4, 5456. [Google Scholar] [CrossRef]
- Xie, B.H.; Fu, W.B.; Fei, G.T.; Xu, S.H.; Gao, X.D.; Zhang, L. De Preparation and Enhanced Infrared Response Properties of Ordered W-Doped VO2 Nanowire Array. Appl. Surf. Sci. 2018, 436, 1061–1066. [Google Scholar] [CrossRef]
- Mutilin, S.V.; Prinz, V.Y.; Seleznev, V.A.; Yakovkina, L.V. Growth of Ordered Arrays of Vertical Free-Standing VO2 nanowires on Nanoimprinted Si. Appl. Phys. Lett. 2018, 113, 043101. [Google Scholar] [CrossRef]
- Beck, M.; Heidari, B. Nanoimprint Lithography For High Volume HDI Manufacturing. On Board Technology. 2006, pp. 52–55. Available online: http://www.onboard-technology.com/pdf_settembre2006/090609.pdf (accessed on 6 October 2022).
- Kurmaev, E.Z.; Cherkashenko, V.M.; Yarmoshenko, Y.M.; Bartkowski, S.; Postnikov, A.V.; Neumann, M.; Duda, L.-C.; Guo, J.H.; Nordgren, J.; Perelyaev, V.A.; et al. Electronic Structure of Studied by X-Ray Photoelectron and x-Ray Emission Spectroscopies. J. Phys. Condens. Matter 1998, 10, 4081–4091. [Google Scholar] [CrossRef]
- Ureña-Begara, F.; Crunteanu, A.; Raskin, J.P. Raman and XPS Characterization of Vanadium Oxide Thin Films with Temperature. Appl. Surf. Sci. 2017, 403, 717–727. [Google Scholar] [CrossRef]
- Nenashev, R.N.; Mordvinova, N.E.; Zlomanov, V.P.; Kuznetsov, V.L. Thermal Decomposition of Vanadyl Acetylacetonate. Inorg. Mater. 2015, 51, 891–896. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Cirlin, G.E.; Ustinov, V.M. Semiconductor Nanowhiskers: Synthesis, Properties, and Applications. Semiconductors 2009, 43, 1539–1584. [Google Scholar] [CrossRef]
- Noborisaka, J.; Motohisa, J.; Fukui, T. Catalyst-Free Growth of GaAs Nanowires by Selective-Area Metalorganic Vapor-Phase Epitaxy. Appl. Phys. Lett. 2005, 86, 213102. [Google Scholar] [CrossRef]
- Ikejiri, K.; Sato, T.; Yoshida, H.; Hiruma, K.; Motohisa, J.; Hara, S.; Fukui, T. Growth Characteristics of GaAs Nanowires Obtained by Selective Area Metal–Organic Vapour-Phase Epitaxy. Nanotechnology 2008, 19, 265604. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, Q. Growth Process Modeling of III–V Nanowire Synthesis via Selective Area Metal–Organic Chemical Vapor Deposition. IEEE Trans. Nanotechnol. 2014, 13, 1093–1101. [Google Scholar] [CrossRef]
- Balu, R.; Ashrit, P.V. Near-Zero IR Transmission in the Metal-Insulator Transition of VO2 Thin Films. Appl. Phys. Lett. 2008, 92, 021904. [Google Scholar] [CrossRef]
- Yang, Z.; Ko, C.; Ramanathan, S. Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions. Annu. Rev. Mater. Res. 2011, 41, 337–367. [Google Scholar] [CrossRef]
- Nag, J.; Haglund, R.F., Jr. Synthesis of Vanadium Dioxide Thin Films and Nanoparticles. J. Phys. Condens. Matter 2008, 20, 264016. [Google Scholar] [CrossRef]
- Grove, A.S. Physics and Technology of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 1967. [Google Scholar]
- Eversteyn, F.C.; Severin, P.J.W.; v. d. Brekel, C.H.J.; Peek, H.L. A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor. J. Electrochem. Soc. 1970, 117, 925. [Google Scholar] [CrossRef]
- Wang, L.; Ren, H.; Chen, S.; Chen, Y.; Li, B.; Zou, C.; Zhang, G.; Lu, Y. Epitaxial Growth of Well-Aligned Single-Crystalline VO2 Micro/Nanowires Assisted by Substrate Facet Confinement. Cryst. Growth Des. 2018, 18, 3896–3901. [Google Scholar] [CrossRef]
- Zhong, C.-Y.; Zhang, X.; Liu, D.; Ning, Y.-Q.; Wang, L.-J. Enhanced Thermal Stability of VCSEL Array by Thermoelectric Analysis-Based Optimization of Mesas Distribution. Chin. Phys. B 2017, 26, 064204. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutilin, S.V.; Yakovkina, L.V.; Seleznev, V.A.; Prinz, V.Y. Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO2 Nanowire Arrays on Nanoimprinted Si Substrates. Materials 2022, 15, 7863. https://doi.org/10.3390/ma15217863
Mutilin SV, Yakovkina LV, Seleznev VA, Prinz VY. Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO2 Nanowire Arrays on Nanoimprinted Si Substrates. Materials. 2022; 15(21):7863. https://doi.org/10.3390/ma15217863
Chicago/Turabian StyleMutilin, Sergey V., Lyubov V. Yakovkina, Vladimir A. Seleznev, and Victor Ya. Prinz. 2022. "Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO2 Nanowire Arrays on Nanoimprinted Si Substrates" Materials 15, no. 21: 7863. https://doi.org/10.3390/ma15217863
APA StyleMutilin, S. V., Yakovkina, L. V., Seleznev, V. A., & Prinz, V. Y. (2022). Kinetics of Catalyst-Free and Position-Controlled Low-Pressure Chemical Vapor Deposition Growth of VO2 Nanowire Arrays on Nanoimprinted Si Substrates. Materials, 15(21), 7863. https://doi.org/10.3390/ma15217863