Bipolar Switching Characteristics of Transparent WOX-Based RRAM for Synaptic Application and Neuromorphic Engineering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masuda, S.; Kitamura, K.; Okumura, Y.; Miyatake, S.; Tabata, H.; Kawai, T. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 2003, 93, 1624–1630. [Google Scholar] [CrossRef]
- Geffroy, B.; Le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2012, 55, 572–582. [Google Scholar] [CrossRef]
- Park, S.H.K.; Ryu, M.; Hwang, C.S.; Yang, S.; Byun, C.; Lee, J.I.; Shin, J.H.; Yoon, S.M.; Chu, H.Y.; Cho, K.I.; et al. Transparent ZnO thin film transistor for the application of high aperture ratio bottom emission AM-OLED display. SID Sym. Dig. Tech. Pap. 2008, 39, 629–632. [Google Scholar] [CrossRef]
- Ramuz, M.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 2012, 24, 3223–3227. [Google Scholar] [CrossRef]
- Moon, H.G.; Shim, Y.S.; Kim, D.H.; Jeong, H.Y.; Jeong, M.; Jung, J.Y.; Han, S.M.; Kim, J.K.; Kim, J.S.; Park, H.H.; et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors. Sci. Rep. 2012, 2, 588. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Patel, M.; Nguyen, T.T.; Yi, J.; Wong, C.P.; Kim, J. Si-embedded metal oxide transparent solar cells. Nano Energy 2020, 77, 105090. [Google Scholar] [CrossRef]
- Ruiz-Perona, A.; Sánchez, Y.; Guc, M.; Khelifi, S.; Kodalle, T.; Placidi, M.; Merino, J.M.; Leon, M.; Caballero, R. Effect of Na and the back contact on Cu2Zn (Sn, Ge) Se4 thin-film solar cells: Towards semi-transparent solar cells. Sol. Energy 2020, 206, 555–563. [Google Scholar] [CrossRef]
- Zahoor, F.; Azni Zulkifli, T.Z.; Khanday, F.A. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. J. Nanomater. 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Loy, D.J.; Dananjaya, P.A.; Tan, F.; Ng, C.; Lew, W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W.; et al. RRAM-based synapse for neuromorphic system with pattern recognition function. In Proceedings of the 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Goux, L.; Clima, S.; Govoreanu, B.; Degraeve, R.; Kar, G.S.; Fantini, A.; Groeseneken, G.; Wouters, D.J.; Jurczak, M. Endurance/Retention Trade-off on HfO2/Metal Cap 1T1R Bipolar RRAM. IEEE Trans. Electron Dev. 2013, 60, 1114–1121. [Google Scholar] [CrossRef]
- Lee, S.R.; Kim, Y.B.; Chang, M.; Kim, K.M.; Lee, C.B.; Hur, J.H.; Park, G.S.; Lee, M.J.; Kim, C.J.; Chung, U.I.; et al. Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory. In Proceedings of the 2012 IEEE Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 71–72. [Google Scholar]
- Guan, X.; Lei, Z.; Yu, X.; Lin, C.H.; Huang, J.K.; Huang, C.Y.; Hu, L.; Li, F.; Vinu, A.; Yi, J.; et al. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. Small 2022, 18, 2203311. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Wan, T.; Hu, L.; Lin, C.H.; Yang, J.; Huang, J.K.; Huang, C.Y.; Shahrokhi, S.; Younis, A.; Ramadass, K.; et al. A Solution-Processed All-Perovskite Memory with Dual-Band Light Response and Tri-Mode Operation. Adv. Func. Mater. 2022, 32, 2110975. [Google Scholar] [CrossRef]
- Cao, Q.; Lu, X.; Wang, X.R.; Guan, X.; Wang, L.; Yan, S.; Wu, T.; Wang, X. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces 2020, 12, 42449–42471. [Google Scholar] [CrossRef] [PubMed]
- Ginnaram, S.; Qiu, J.T.; Maikap, S. Role of the Hf/Si Interfacial Layer on the High Performance of MoS2-Based Conductive Bridge RAM for Artificial Synapse Application. IEEE Electron. Dev. 2020, 41, 709–712. [Google Scholar] [CrossRef]
- Lim, S.; Kwak, M.; Hwang, H. Improved Synaptic Behavior of CBRAM Using Internal Voltage Divider for Neuromorphic Systems. IEEE Trans. Electron. Dev. 2018, 65, 3976–3981. [Google Scholar] [CrossRef]
- Chiang, K.K.; Chen, J.S.; Wu, J.J. Aluminum electrode modulated bipolar resistive switching of Al/fuel-assisted NiO x/ITO memory devices modeled with a dual-oxygen-reservoir structure. ACS Appl. Mater. Interfaces 2012, 4, 4237–4245. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, T.; Nagashima, K.; Oka, K.; Kanai, M.; Klamchuen, A.; Park, B.H.; Kawai, T. Scaling effect on unipolar and bipolar resistive switching of metal oxides. Sci. Rep. 2013, 3, 1657. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Yang, M.K. Duality characteristics of bipolar and unipolar resistive switching in a Pt/SrZrO3/TiOx/Pt stack. AIP Adv. 2020, 10, 065221. [Google Scholar] [CrossRef]
- Ghalamestani, S.G.; Goux, L.; Díaz-Droguett, D.E.; Wouters, D.; Lisoni, J.G. WOx resistive memory elements for scaled Flash memories. MRS OPL 2011, 1337, 810. [Google Scholar] [CrossRef]
- Lin, C.L.; Tang, C.C.; Wu, S.C.; Juan, P.C.; Kang, T.K. Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectron. Eng. 2015, 136, 15–21. [Google Scholar] [CrossRef]
- Jinesh, K.B. The effect of the top electrode on the switching behavior of bipolar Al2O3/ZnO RRAM. Microelectron. Eng. 2021, 250, 111637. [Google Scholar] [CrossRef]
- Shen, W.; Dittmann, R.; Breuer, U.; Waser, R. Improved endurance behavior of resistive switching in (Ba, Sr) TiO 3 thin films with W top electrode. Appl. Phys. Lett. 2008, 93, 222102. [Google Scholar] [CrossRef]
- Gao, B.; Yu, S.; Xu, N.; Liu, L.F.; Sun, B.; Liu, X.Y.; Han, R.Q.; Kang, J.F.; Yu, B.; Wang, Y.Y. Oxide-based RRAM switching mechanism: A new ion-transport-recombination model. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, H.; Yan, X. Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects. Rapid Res. Lett. 2019, 13, 1900073. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shim, E.L.; Choi, Y.J. Fabrication of transparent AZO/ZnO/ITO resistive random access memory devices and their ZnO active layer deposition temperature-dependent switching characteristics. J. Nanosci. Nanotechnol. 2016, 16, 10303–10307. [Google Scholar] [CrossRef]
- Yang, P.J.; Jou, S.; Chiu, C.C. Bipolar resistive switching in transparent AZO/SiOx/ITO devices. Jpn. J. Appl. Phys. 2014, 53, 075801. [Google Scholar] [CrossRef]
- Yao, J.; Lin, J.; Dai, Y.; Ruan, G.; Yan, Z.; Li, L.; Zhong, L.; Natelson, D.; Tour, J.M. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 2012, 3, 1101. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G. Invisible circuits. Nature 1997, 389, 907–908. [Google Scholar] [CrossRef]
- Qian, K.; Cai, G.; Nguyen, V.C.; Chen, T.; Lee, P.S. Direct observation of conducting filaments in tungsten oxide based transparent resistive switching memory. ACS Appl. Mater. Interfaces 2016, 8, 27885–27891. [Google Scholar] [CrossRef] [PubMed]
- Bersuker, G.; Gilmer, D.C.; Veksler, D.; Yum, J.; Park, H.; Lian, S.; Vandelli, L.; Padovani, A.; McKenna, K.; Shluger, A. Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 6–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, J.; Kim, S. Bipolar Switching Characteristics of Transparent WOX-Based RRAM for Synaptic Application and Neuromorphic Engineering. Materials 2022, 15, 7185. https://doi.org/10.3390/ma15207185
Kim J, Park J, Kim S. Bipolar Switching Characteristics of Transparent WOX-Based RRAM for Synaptic Application and Neuromorphic Engineering. Materials. 2022; 15(20):7185. https://doi.org/10.3390/ma15207185
Chicago/Turabian StyleKim, Jihyung, Jongmin Park, and Sungjun Kim. 2022. "Bipolar Switching Characteristics of Transparent WOX-Based RRAM for Synaptic Application and Neuromorphic Engineering" Materials 15, no. 20: 7185. https://doi.org/10.3390/ma15207185
APA StyleKim, J., Park, J., & Kim, S. (2022). Bipolar Switching Characteristics of Transparent WOX-Based RRAM for Synaptic Application and Neuromorphic Engineering. Materials, 15(20), 7185. https://doi.org/10.3390/ma15207185