ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light
Abstract
:1. Introduction
2. Experiment
2.1. Synthesis of BiOI
2.2. Synthesis of ZIF-8@BiOI
2.3. Synthesis of ZnO@Bi5O7I
2.4. Characterization
2.5. Photocatalytic Activity Test
3. Results and Discussion
3.1. Morphology and Structure
3.2. Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, X.; Yue, D.; Tian, Z.; Reng, M.; Zhu, Y.; Kan, M.; Zhang, T.; Zhao, Y. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl. Catal. B-Environ. 2016, 193, 16–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Li, S.; Liu, J.; Dong, M.; Li, Y.; Lu, N.; Lei, S.; Tang, J.; Fan, J.J.C. Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos. Part B Eng. 2019, 176, 107338. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, T.; Zhang, Q.; Duan, Z.; Li, C.; Hou, D.; Xv, Q.; Meng, C.; Zhang, Y.; Zhu, Y. In-situ growth UiO-66 on Bi2O3 to fabrication p-p heterojunction with enhanced visible-light degradation of tetracycline. J. Solid State Chem. 2021, 302, 122353. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, Z.; Zhao, S.; Zhang, Q.; Shen, X.; Lv, H.; Liu, J.; Li, B. In-situ growth of Ag/AgBr nanoparticles on a metal organic framework with enhanced visible light photocatalytic performance. Mater. Sci. Semicond. Processing 2021, 133, 105973. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Cheminform. J. Am. Chem. Soc. 1977, 8, 303–304. [Google Scholar] [CrossRef]
- Serpone, N.; Pelizzetti, E. (Eds.) Photocatalysis: Fundamentals and Applications; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Ollis, D.F.; Al-Ekabi, H. Photocatalytic Purification and Treatment of Water and Air; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Anpo, M.; Kamath, P.V. (Eds.) Environment Benign Photocatalysts; Springer: New York, NY, USA, 2010. [Google Scholar]
- Yang, J.; Wang, X.X.; Lv, X.W.; Xu, X.; Mi, Y.J.; Zhao, J.L. Prepa-ration and photocatalytic activity of BiOX-TiO2 composite films (X = Cl, Br, I). Ceram. Int. 2014, 40, 8607–8611. [Google Scholar] [CrossRef]
- Li, S.P.; Lu, H.; Zhu, G.Q.; Hojamberdiev, M.; Gao, J.Z.; Wei, X.M.; Liu, P. A recyclable and stable BiOI/agarose hybrid gel photocatalyst for photodegradation of Rhodamine B. J. Mater. Sci. Mater. Electron. 2018, 29, 16454–16459. [Google Scholar] [CrossRef]
- Zeng, L.; Zhe, F.; Wang, Y.; Zhang, Q.L.; Zhao, X.Y.; Hu, X.; Wu, Y.; He, Y.M. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J. Colloid Interface Sci. 2018, 539, 563–574. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zhu, G.Q.; Hojamberdiev, M.; Gao, J.Z.; Zhu, R.L.; Wang, C.H.; Wei, X.; Liu, P. Three-dimensional Ag2O/Bi5O7I p–n hetero junction photocatalyst harnessing UV–vis–NIR broad spectrum for photodegradation of organic pollutants. J. Hazard. Mater. 2018, 344, 42–54. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, B.; Dai, Y.; Qin, X.; Zhang, X. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 2010, 26, 6618–6624. [Google Scholar] [CrossRef]
- Huang, H.; He, Y.; Du, X.; Chu, P.K.; Zhang, Y. A general and facile approach to hetero structured core/shell BiVO4/BiOI p–n junction: Room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustain. Chem. Eng. 2015, 3, 3262–3273. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, K.; He, Y.; Zhang, T.; Dong, F.; Du, X.; Zhang, Y. In situ assembly of BiOI@Bi12O17Cl2 p-n junction: Charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl. Catal. B 2016, 199, 75–86. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Wang, L.; Han, M.; Zhang, M.; Wang, H.; Huang, H.; Liu, Y.; Kang, Z. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B 2017, 206, 501–509. [Google Scholar] [CrossRef]
- Huang, H.W.; Xiao, K.; Zhang, T.R.; Dong, F.; Zhang, Y.H. Rational designon 3D hierarchical bismuth oxyiodides via in situ self-template phasetrans formation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Appl. Catal. B 2017, 203, 879–888. [Google Scholar] [CrossRef]
- Liang, C.; Niu, C.G.; Zhang, L.; Wen, X.J.; Yang, S.F.; Guo, H.; Zeng, G.M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258. [Google Scholar] [CrossRef]
- Yao, L.Z.; Shi, L.; Wang, F.X. Synthesis and visible-light photo-catalytic performance of flower-like porous Bi5O7I. Mater. Res. Express 2018, 5, 045042. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhu, G.Q.; Gao, J.Z.; Zhu, R.L.; Hojamberdiev, M.; Wang, C.H.; Wei, X.M.; Liu, P. A novel synergy of Er3+/Fe3+co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation. Appl. Catal. B 2017, 205, 421–432. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Dong, Y.Z.; Li, X.Z.; Chu, M.; Li, N.; Dong, Y.L.; Xie, Z.Z.; Lin, Y.W.; Cai, W.Q.; et al. Preparation of Ag-doped Bi5O7I composites with enhanced visible-light-induced photocatalytic performance. Res. Chem. Intermed. 2019, 45, 2797–2809. [Google Scholar] [CrossRef]
- Chen, R.; Chen, Z.Y.; Ji, M.X.; Chen, H.X.; Liu, Y.L.; Xia, J.X.; Li, H.M. Enhanced reactive oxygen species activation for building carbon quantum dots modified Bi5O7I nanorod composites and optimized visible-light-response photocatalytic performance. J. Colloid Interface Sci. 2018, 532, 727–737. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Long, Y.J.; Li, L.X.; Wang, L.L.; Zhang, S.F.; Jiang, F.Z. Room temperature synthesis of BiOI/Bi5O7I p–n het-erojunction with enhanced photocatalytic activity for 17a-ethy-nylestradiol. Chem. Sel. 2018, 3, 8095–8105. [Google Scholar]
- Lam, S.M.; Sin, J.C.; Abdullah, A.Z.; Mohamed, A.R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination Water Treat. 2012, 41, 131–169. [Google Scholar] [CrossRef]
- Hariprasad, N.; Anju, S.G.; Yesodharan, E.P. Sunlight induced removal of Rhodamine B from water through Semiconductor Photocatalysis: Effects of Adsorption, Reaction Conditions and Additives. Res. J. Mater. Sci. 2013, 2320, 6055. [Google Scholar]
- Kansal, S.K.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, M.; Lv, H.; Zhao, S.; Shen, X.; Zhang, Q.; Zhu, W.; Li, B. Coating BiOCl@g-C3N4 nanocomposite with a metal organic framework: Enhanced visible light photocatalytic activities. J. Solid State Chem. 2020, 292, 121641. [Google Scholar] [CrossRef]
- Huo, J.B.; Xu, L.; Chen, X.X.; Zhang, Y.; Yang, J.C.E.; Yuan, B.L. Direct epitaxialsynthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water. Microporous Mesoporous Mater. 2019, 276, 68–75. [Google Scholar] [CrossRef]
- Flaig, R.W.; Popp, T.M.O.; Fracaroli, A.M.; Kapustin, E.A.; Kalmutzki, M.J.; Altamimi, R.M.; Fathieh, F.; Reimer, J.A.; Yaghi, O.M. The chemistry of CO2 capturein an amine-functionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 2017, 139, 12125–12128. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, Y.M.; Zhao, S.Y.; Liu, P.; Wei, C.; Wu, Y.L.; Xia, C.K.; Xie, J.M. Three N-H functionalized metal-organic frameworks with selective CO2 uptake, dye capture, and catalysis. Inorg. Chem. 2014, 53, 7692–7699. [Google Scholar] [CrossRef]
- Huang, N.; Wang, K.C.; Drake, H.; Cai, P.Y.; Pang, J.D.; Li, J.L.; Che, S.; Huang, L.; Wang, Q.; Zhou, H.C. Tailor-made pyrazolide-based metal-organic frameworks forselective catalysis. J. Am. Chem. Soc. 2018, 140, 6383–6390. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Ouyang, S.X.; Ye, J.H. Metal-organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 7563–7572. [Google Scholar] [CrossRef]
- Tang, B.; Dai, Y.Z.; Sun, Y.F.; Chen, H.Q.; Wang, Z.W. Graphene and MOFs co modified composites for high adsorption capacity and photocatalytic performanceto remove pollutant under both UV- and visible-light irradiation. J. Solid State Chem. 2020, 284, 121215. [Google Scholar] [CrossRef]
- Yang, P.; Ye, Y.; Yan, Z.; Li, Q.; Zhang, K.; Yang, Y.; Zhang, Q.; Yin, H.; Xia, D.; Pan, F. Efficient removal of tetracycline in water by a novel chemical and biological coupled system with non-woven cotton fabric as carrier. Chin. Chem. Let. 2021, 5, 6157. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. Sonocrystallization of ZIF-8 on Electrostatic Spinning TiO2 Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect. ACS Appl. Mater. Interfaces 2016, 8, 20274–20282. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Yang, R.D.; Yu, K.B. Synthesis and cryststructure of a barium complex with pyruvic acid isonocotnoy hydrazone. Polyhedron. Orient. J. Chem. 1996, 15, 3749–3753. [Google Scholar]
- Sakthivel, S. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. Sol. Cells 2003, 77, 65–82. [Google Scholar] [CrossRef]
- Zhang, F.; Sang, X.; Tan, X.; Liu, C.; Zhang, J.; Luo, T.; Liu, L.; Han, B.; Yang, G.; Binks, B.P. Converting Metal-Organic Framework Particles from Hydrophilic to Hydrophobic by an Interfacial Assembling Route. Langmuir 2017, 33, 12427–12433. [Google Scholar] [CrossRef]
- Atzori, C.; Shearer, G.C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K.P.; Bordiga, S. Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. J. Phys. Chem. C 2017, 121, 9312–9324. [Google Scholar] [CrossRef] [Green Version]
- Betianu, C.; Caliman, F.A.; Gavrilescu, M.; Cretescu, I.; Cojocaru, C.; Poulios, I. Response surface methodology applied for Orange II photocatalytic degradation in TiO2 aqueous suspensions. J. Chem. Technol. Biotechnol. 2008, 83, 1454–1465. [Google Scholar] [CrossRef]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Cao, F.; Guo, Z. Which affect the photo reactivity of BiOBr single-crystalline nanosheets with different hydrothermal pH value: Size or facet. Appl. Surf. Sci. 2014, 311, 858–863. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Huang, W.; Yang, Y.; Wang, Y.; He, C.; Liu, N.; Wu, M.; Tang, L. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation. Mater. Res. Bull. 2018, 99, 349–358. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, H.; Dai, Y.; Wu, X.; Han, Z.; Zhu, Y. Novel n-p-n heterojunction of AgI/BiOI/UiO composites with boosting visible light photocatalytic activities. Appl. Organomet. Chem. 2021, 35, e6186. [Google Scholar] [CrossRef]
- Parolo, M.E.; Savini, M.C.; Vallés, J.M. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl. Clay Sci. 2008, 40, 179–186. [Google Scholar] [CrossRef]
- Bai, Y.H.; Su, J.F.; Wen, Q.; Li, G.Q.; Xue, L.; Huang, T.L. Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms. Bioresour. Technol. 2020, 312, 123565. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.R.; Lee, T.W.; Li, J.A. Origin of the enhanced photocatalytic activity of graphitic carbon nitride nanocomposites and the effects of water constituents. Carbon 2020, 167, 852–862. [Google Scholar] [CrossRef]
- Huang, N.; Shu, J.; Wang, Z.; Chen, M.; Ren, C.; Zhang, W. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J. Alloy. Compd. 2015, 648, 919–929. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L.; Liu, C.; Xie, T. Preparation and photocatalytic activity of porous Bi5O7I nanosheets. Appl. Surf. Sci. 2014, 319, 265–271. [Google Scholar] [CrossRef]
- Huang, H.; Tu, S.; Zeng, C.; Zhang, T.; Reshak, A.H.; Zhang, Y. Macroscopic Polarization Enhancement Promoting Photo- and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. Angew. Chem. Int. Ed. 2017, 56, 11860–11864. [Google Scholar] [CrossRef]
Samples | SBET (m2g−1) | Pore Volume (cm3g−1) | Pore Size (nm) |
---|---|---|---|
ZnO | 147.7 | 0.207 | 2.2 |
Bi5O7I | 4.4 | 0.008 | 2.8 |
ZnO@Bi5O7I = 1:1 | 5.6 | 0.017 | 3.0 |
ZnO@Bi5O7I = 1:2 | 22.8 | 0.056 | 3.4 |
ZnO@Bi5O7I = 2:1 | 5.9 | 0.014 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Duan, Z.; Xu, Q.; Li, C.; Hou, D.; Gao, G.; Luo, W.; Wang, Y.; Zhu, Y. ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light. Materials 2022, 15, 508. https://doi.org/10.3390/ma15020508
Tang J, Duan Z, Xu Q, Li C, Hou D, Gao G, Luo W, Wang Y, Zhu Y. ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light. Materials. 2022; 15(2):508. https://doi.org/10.3390/ma15020508
Chicago/Turabian StyleTang, Jijun, Zhengzhou Duan, Qinyun Xu, Chuwen Li, Dongmei Hou, Guicheng Gao, Weiqi Luo, Yujia Wang, and Yu Zhu. 2022. "ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light" Materials 15, no. 2: 508. https://doi.org/10.3390/ma15020508
APA StyleTang, J., Duan, Z., Xu, Q., Li, C., Hou, D., Gao, G., Luo, W., Wang, Y., & Zhu, Y. (2022). ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light. Materials, 15(2), 508. https://doi.org/10.3390/ma15020508