Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- López-Gándara, C.; Ramos, F.M.; Cirera, A. YSZ-based oxygen sensors and the use of nanomaterials: A review from classical models to current trends. J. Sens. 2009, 2009, 258489. [Google Scholar] [CrossRef]
- Badwal, S.P.S.; Foger, K. Solid oxide fuel cell electrolyte review. Ceram. Int. 1996, 22, 257–265. [Google Scholar] [CrossRef]
- Shuk, P. Process Zirconia Oxygen Analyzer—State of Art Zirkondioxid-Sauerstoffsensoren—Stand der Technik. TM. Tech. Mess. 2010, 77, 19–23. [Google Scholar] [CrossRef]
- Zhuiykov, S. Electrochemistry of Zirconia Gas Sensors; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Milshtein, J.D.; Gratz, E.; Pati, S.; Powell, A.C.; Pal, U. Yttria stabilized zirconia membrane stability in molten fluoride fluxes for low-carbon magnesium production by the SOM process. J. Min. Metall. Sect. 2013, 49, 183–190. [Google Scholar] [CrossRef]
- Hwang, K.J.; Shin, M.; Lee, M.H.; Lee, H.; Oh, M.Y.; Shin, T.H. Investigation on the phase stability of yttria-stabilized zirconia electrolytes for high-temperature electrochemical application. Ceram. Int. 2019, 45, 9462–9467. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Wang, X.; Yu, J.; Li, L. A review of zirconia-based solid electrolytes. Ionics 2016, 22, 2249–2262. [Google Scholar] [CrossRef]
- Chervin, C.N.; Clapsaddle, B.J.; Chiu, H.W.; Gash, A.E.; Satcher, J.H.; Kauzlarich, S.M. Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol− gel route. Chem. Mater. 2005, 17, 3345–3351. [Google Scholar] [CrossRef]
- Subbarao, E.C.; Maiti, H.S. Solid electrolytes with oxygen ion conduction. Solid State Ion. 1984, 11, 317–338. [Google Scholar] [CrossRef]
- Weller, M.; Herzog, R.; Kilo, M.; Borchardt, G.; Weber, S.; Scherrer, S. Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments. Solid State Ion. 2004, 175, 409–413. [Google Scholar] [CrossRef]
- Wu, C.J.; Hamada, M.S. Experiments: Planning, Analysis, and Optimization; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Buzzi-Ferraris, G. Planning of experiments and kinetic analysis. Catal. Today 1999, 52, 125–132. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Stevenson, D.A. Influence of Annealing on the Electrical Conductivity of Polycrystalline ZrO2 + 8 Wt% Y2O3. J. Am. Ceram. Soc. 1982, 65, 213–216. [Google Scholar] [CrossRef]
- Kondoh, J.; Kawashima, T.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: I. A Study of Its Electrochemical Properties. J. Electrochem. Soc. 1998, 145, 1527. [Google Scholar] [CrossRef]
- Backhaus-Ricoult, M.; Badding, M.; Thibault, Y. Grain boundary segregation and conductivity in yttria-stabilized zirconia. In Advances in Electronic and Electrochemical Ceramics: Proceedings of the 107th Annual Meeting of The American Ceramic Society; Dongan, F., Kumta, P.N., Eds.; John Wiley & Sons: Baltimore, MD, USA, 2012; p. 173. [Google Scholar]
- Navrotsky, A. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. J. Mater. Chem. 2010, 20, 10577–10587. [Google Scholar] [CrossRef]
- International Standards Organization. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Microstructural Characterization—Part 1: Determination of Grain Size and Size Distribution, ISO 13383-1; International Standards Organization (ISO): Geneva, Switzerland, 2012. [Google Scholar]
- Kondoh, J. Origin of the hump on the left shoulder of the X-ray diffraction peaks observed in Y2O3-fully and partially stabilized ZrO2. J. Alloy. Compd. 2004, 375, 270–282. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: II. A Study of the Effect of the Microstructure on Conductivity. J. Electrochem. Soc. 1998, 145, 1536. [Google Scholar] [CrossRef]
- Dura, O.J.; Boada, R.; De La Torre, M.A.L.; Aquilanti, G.; Rivera-Calzada, A.; Leon, C.; Chaboy, J. XANES and EXAFS study of the local order in nanocrystalline yttria-stabilized zirconia. Phys. Rev. B 2013, 87, 174109. [Google Scholar] [CrossRef]
- Khare, J.; Rajput, P.; Joshi, M.; Jha, S.; Bhattacharyya, D.; Kukreja, L. X-ray absorption spectroscopy based investigation of local structure in yttria stabilized zirconia nanoparticles generated by laser evaporation method: Effect of pulsed vs. CW mode of laser operation. Ceram. Int. 2015, 41, 5909–5915. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Effect of Aging on Yttria-Stabilized Zirconia: III. A Study of the Effect of Local Structures on Conductivity. J. Electrochem. Soc. 1998, 145, 1550. [Google Scholar] [CrossRef]
- Ren, X.; Pan, W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia. Acta Mater. 2014, 69, 397–406. [Google Scholar] [CrossRef]
- Appel, C.C.; Bonanos, N.; Horsewell, A.; Linderoth, S. Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J. Mater. Sci. 2001, 36, 4493–4501. [Google Scholar] [CrossRef]
- Kondoh, J.; Kikuchi, S.; Tomii, Y.; Ito, Y. Aging and composition dependence of electron diffraction patterns in Y2O3-stabilized ZrO2: Relationship between crystal structure and conductivity. Physica B 1999, 262, 177–189. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Jo, K.; Park, M.-s.; Kim, T.; Lee, H. Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials 2022, 15, 6947. https://doi.org/10.3390/ma15196947
Lee H, Jo K, Park M-s, Kim T, Lee H. Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials. 2022; 15(19):6947. https://doi.org/10.3390/ma15196947
Chicago/Turabian StyleLee, Hwanseok, Kanghee Jo, Min-sung Park, Taewoo Kim, and Heesoo Lee. 2022. "Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging" Materials 15, no. 19: 6947. https://doi.org/10.3390/ma15196947
APA StyleLee, H., Jo, K., Park, M.-s., Kim, T., & Lee, H. (2022). Destabilization and Ion Conductivity of Yttria-Stabilized Zirconia for Solid Oxide Electrolyte by Thermal Aging. Materials, 15(19), 6947. https://doi.org/10.3390/ma15196947