OFF-State Leakage Suppression in Vertical Electron–Hole Bilayer TFET Using Dual-Metal Left-Gate and N+-Pocket
Abstract
:1. Introduction
2. Devices Structure and Simulation Methods
3. Results and Discussion
3.1. Operating Mechanism of Three EHBTFETs
3.2. Comparison of DC Performance among Three EHBTFETs
3.3. Effect of N+-Pocket on DGNP-EHBTFET
3.4. Effect of Gate Work-Function on DGNP-EHBTFET
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boucart, K.; Ionescu, A.M. Double-gate tunnel fet with high-κ gate dielectric. IEEE Trans. Electron. Devices 2007, 54, 1725–1733. [Google Scholar] [CrossRef]
- Ghosh, B.; Akram, M.W. Junctionless tunnel field effect transistor. IEEE Electron. Device Lett. 2013, 34, 584–586. [Google Scholar] [CrossRef]
- Kumar, M.J.; Janardhanan, S. Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron. Devices 2013, 60, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Raman, A. Performance Assessment of the Charge-Plasma-Based Cylindrical GAA Vertical Nanowire TFET with Impact of Interface Trap Charges. IEEE Trans. Electron. Devices 2019, 66, 4453–4460. [Google Scholar] [CrossRef]
- Gupta, A.K.; Raman, A.; Kumar, N. Design and Investigation of a Novel Charge Plasma-Based Core-Shell Ring-TFET: Analog and Linearity Analysis. IEEE Trans. Electron. Devices 2019, 66, 3506–3512. [Google Scholar] [CrossRef]
- Choi, Y.; Hong, Y.; Ko, E.; Shin, C. Optimization of double metal-gate InAs/Si heterojunction nanowire TFET. Semicond. Sci. Technol. 2020, 35, 075024. [Google Scholar] [CrossRef]
- Misra, R.; Singh, K.; Kumar, M.; Rastogi, R.; Kumar, A.; Dubey, S. An Ultra-Low-Power Black Phosphorus (B-Ph)/Si Heterojunction Dopingless-Tunnel FET (HD-TFET) with Enhanced Electrical Characteristics. Superlattices Microstruct. 2021, 149, 106752. [Google Scholar] [CrossRef]
- Tripathy, M.R.; Singh, A.K.; Samad, A.; Chander, S.; Baral, K.; Singh, P.K.; Jit, S. Device and Circuit-Level Assessment of GaSb/Si Heterojunction Vertical Tunnel-FET for Low-Power Applications. IEEE Trans. Electron. Devices 2020, 67, 1285–1292. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.A.; Jin, Z.; Hao, Y. An In0.53Ga0.47As/In0.52Al0.48As Heterojunction Dopingless Tunnel FET with a Heterogate Dielectric for High Performance. IEEE Trans. Electron. Devices 2019, 66, 3229–3235. [Google Scholar] [CrossRef]
- Pindoo, I.A.; Sinha, S.K.; Chander, S. Improvement of Electrical Characteristics of SiGe Source Based Tunnel FET Device. Silicon 2021, 13, 3209–3215. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.A.; Chen, Y.; Jin, Z.; Hao, Y. Performance enhancement of the dual-metal gate In0.53Ga0.47As dopingless TFET by using a platinum metal strip insertion. Jpn. J. Appl. Phys. 2019, 58, 104001. [Google Scholar] [CrossRef]
- Gedam, A.; Acharya, B.; Mishra, G.P. Junctionless Silicon Nanotube TFET for Improved DC and Radio Frequency Performance. Silicon 2021, 13, 167–178. [Google Scholar] [CrossRef]
- Raad, B.R.; Tirkey, S.; Sharma, D.; Kondekar, P. A new design approach of dopingless tunnel fet for enhancement of device characteristics. IEEE Trans. Electron. Devices 2017, 64, 1830–1836. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.A.; Zhang, H.W.; Zhang, B.T.; Zhang, W.T. An In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As double hetero-junction junctionless TFET. Jpn. J. Appl. Phys. 2021, 60, 074001. [Google Scholar] [CrossRef]
- Xu, H.F.; Han, X.F.; Sun, W. Design and investigation of dopingless double-gate line tunneling transistor: Analog performance, linearity, and harmonic distortion analysis. Chin. Phys. B 2020, 29, 108502. [Google Scholar] [CrossRef]
- Ghosh, P.; Bhowmick, B. Investigation of Electrical Characteristics in a Ferroelectric L-Patterned Gate Dual Tunnel Diode TFET. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2440–2444. [Google Scholar] [CrossRef]
- Xie, H.W.; Liu, H.X.; Han, T.; Li, W.; Chen, S.P.; Wang, S.L. TCAD Simulation of a Double L-shaped gate Tunnel Field Effect Transistor with covered source–channel. Micro Nano Lett. 2020, 15, 272–276. [Google Scholar] [CrossRef]
- Ahangari, Z. Performance investigation of steep-slope core–shell nanotube indium nitride electron–hole bilayer tunnel field effect transistor. Appl. Phys. A Mater. Sci. Process. 2019, 125, 405. [Google Scholar] [CrossRef]
- Kim, S.; Choi, W.Y.; Park, B.G. Vertical-Structured Electron-Hole Bilayer Tunnel Field-Effect Transistor for Extremely Low-Power Operation with High Scalability. IEEE Trans. Electron. Devices 2018, 65, 2010–2015. [Google Scholar] [CrossRef]
- Padilla, J.L.; Medina-Bailon, C.; Alper, C.; Gamiz, F.; Ionescu, A.M. Confinement-induced InAs/GaSb heterojunction electron–hole bilayer tunneling field-effect transistor. Appl. Phys. Lett. 2018, 112, 182101. [Google Scholar] [CrossRef]
- Masoudi, A.; Ahangari, Z.; Fathipour, M. Performance optimization of a nanoscale GaSb P-channel electron-hole bilayer tunnel field effect transistor using metal gate workfunction engineering. Mater. Res. Express 2019, 6, 096311. [Google Scholar] [CrossRef]
- Padilla, J.L.; Medina-Bailon, C.; Marquez, C.; Sampedro, C.; Donetti, L.; Gamiz, F.; Ionescu, A.M. Gate Leakage Tunneling Impact on the InAs/GaSb Heterojunction Electron-Hole Bilayer Tunneling Field-Effect Transistor. IEEE Trans. Electron. Devices 2018, 65, 4679–4686. [Google Scholar] [CrossRef]
- Ahangari, Z. Design and performance optimization of thin film tin monoxide (SnO)/silicon electron–hole bilayer tunnel field-effect transistor. J. Comput. Electron. 2020, 19, 1485–1493. [Google Scholar] [CrossRef]
- Shamloo, H.; Goharrizi, A.Y. Performance study of tunneling field effect transistors based on the graphene and phosphorene nanoribbons. Micro Nanostruct. 2022, 169, 207336. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, X.; Zhang, M.; Wang, Y.; Zhang, D.W. A symmetric tunnel field-effect transistor based on mos2/black phosphorus/mos2 nanolayered heterostructures. ACS Appl. Nano Mater. 2019, 2, 5674–5680. [Google Scholar] [CrossRef]
- Jiao, X.; Jia, J.; Shen, L.; Ju, J.; Lee, S. Tunneling field effect transistor integrated with black phosphorus-mos2 junction and ion gel dielectric. Appl. Phys. Lett. 2017, 110, 033103. [Google Scholar]
- Iida, R.; Kim, S.H.; Yokoyama, M.; Taoka, N. Planar-type In0.53Ga0.47As channel band-to-band tunneling metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 2011, 110, 124505. [Google Scholar] [CrossRef]
- Ahn, D.H.; Yoon, S.H.; Takenaka, M.; Takagi, S. Effects of HfO2/Al2O3 gate stacks on electrical performance of planar InxGa1−xAs tunneling field-effect transistors. Appl. Phys. Express 2017, 10, 084201. [Google Scholar] [CrossRef]
- Seo, J.H.; Yoon, Y.J.; Cho, S.; Kang, I.M.; Lee, J.H. Design optimization and analysis of ingaas/inas/ingaas heterojunction-based electron hole bilayer tunneling fets. J. Nanosci. Nanotechnol. 2019, 19, 6070–6076. [Google Scholar] [CrossRef]
- Alper, C.; Palestri, P.; Padilla, J.L.; Ionescu, A.M. The Electron-Hole Bilayer TFET: Dimensionality Effects and Optimization. IEEE Trans. Electron. Devices 2016, 63, 2603–2609. [Google Scholar] [CrossRef] [Green Version]
- Alper, C.; Palestri, P.; Padilla, J.L.; Ionescu, A.M. Underlap counterdoping as an efficient means to suppress lateral leakage in the electron–hole bilayer tunnel FET. Semicond. Sci. Technol. 2016, 31, 045001. [Google Scholar] [CrossRef]
- Loan, S.A.; Alharbi, A.G.; Rafat, M. Ambipolar leakage suppression in electron–hole bilayer TFET: Investigation and analysis. J. Comput. Electron. 2018, 17, 977–985. [Google Scholar]
- Sahu, C.; Singh, J. Charge-Plasma Based Process Variation Immune Junctionless Transistor. IEEE Electron. Device Lett. 2014, 35, 411–413. [Google Scholar] [CrossRef]
- Hueting, R.J.E.; Rajasekharan, B.; Salm, C.; Schmitz, J. The Charge Plasma P-N Diode. IEEE Electron. Device Lett. 2008, 29, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 89th ed.; Taylor and Francis: New York, NY, USA, 2008; p. 12. [Google Scholar]
- Kawano, H.; Takahashi, T.; Tagashira, Y.; Mine, H.; Moriyama, M. Work function of refractory metals and its dependence upon working conditions. Surf. Sci. 1999, 146, 105–108. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Taoka, N.; Yokoyama, M.; Lee, S.; Kim, S.H.; Hoshii, T.; Yasuda, T.; Jevasuwan, W.; Maeda, T.; Ichikawa, O.; et al. 1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density. Appl. Phys. Lett. 2012, 100, 132906. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y.; Wang, Y.; Zhou, F.; Xue, F.; Lee, J. InGaAs Tunneling Field-Effect-Transistors with Atomic-Layer-Deposited Gate Oxides. IEEE Trans. Electron. Devices 2011, 58, 2990–2995. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Bulk material width (W) | 6 nm |
N+-pocket width (Wp) | 2 nm |
N+-pocket length (Lp) | 50 nm |
Drain length (LD) | 50 nm |
Source length (LS) | 50 nm |
Tunneling-gate length (LTG) | 50 nm |
Control-gate length (LCG) | 50 nm |
Right-gate length (LRG) | 100 nm |
HfO2 length (LHfO2) | 150 nm |
SiO2 length (LSiO2) | 100 nm |
Dielectric width near gate (Wox) | 2 nm |
Tunneling-gate work-function (ΦTG) | 4.5 eV |
Control-gate work-function (ΦCG) | 5.0 eV |
Right-gate work-function (ΦRG) | 5.5 eV |
ΦRG (eV) | IOFF (A/μm) | ION (A/μm) | ION/IOFF | Vth (V) | SSavg (mV/dec) |
---|---|---|---|---|---|
5.0 | 1.50 × 10−19 | 1.87 × 10−8 | 1.25 × 1011 | N/A | N/A |
5.2 | 1.15 × 10−18 | 1.20 × 10−6 | 1.04 × 1012 | 0.52 | 30.7 |
5.4 | 2.59 × 10−17 | 5.79 × 10−6 | 2.24 × 1011 | 0.32 | 33.4 |
5.5 | 3.54 × 10−15 | 1.92 × 10−5 | 5.42 × 109 | 0.17 | 22.8 |
5.6 | 2.58 × 10−9 | 2.87 × 10−5 | 1.11 × 104 | 0.14 | 88.1 |
5.8 | 5.16 × 10−9 | 4.30 × 10−5 | 8.33 × 103 | 0.11 | 85.4 |
ΦTG (eV) | IOFF (A/μm) | ION (A/μm) | ION/IOFF | Vth (V) | SSavg (mV/dec) |
---|---|---|---|---|---|
3.5 | 1.64 × 10−7 | 2.19 × 10−5 | 1.34 × 102 | N/A | N/A |
4.0 | 7.87 × 10−8 | 2.11 × 10−5 | 2.68 × 102 | 0.02 | 192.3 |
4.4 | 7.90 × 10−9 | 1.99 × 10−5 | 2.52 × 103 | 0.12 | 108.9 |
4.5 | 3.54 × 10−15 | 1.92 × 10−5 | 5.42 × 109 | 0.17 | 22.8 |
4.6 | 8.51 × 10−15 | 1.81 × 10−5 | 2.13 × 109 | 0.24 | 33.9 |
5.0 | 1.03 × 10−13 | 9.93 × 10−6 | 9.64 × 107 | 0.48 | 80.2 |
5.5 | 6.86 × 10−13 | 3.43 × 10−6 | 5.00 × 106 | 0.51 | 98.8 |
ΦCG (eV) | IOFF (A/μm) | ION (A/μm) | ION/IOFF | Vth (V) | SSavg (mV/dec) |
---|---|---|---|---|---|
3.5 | 1.47 × 10−5 | 4.57 × 10−5 | 3.11 × 100 | N/A | N/A |
4.0 | 3.43 × 10−6 | 3.79 × 10−5 | 1.10 × 101 | N/A | N/A |
4.5 | 9.13 × 10−8 | 2.90 × 10−5 | 3.18 × 102 | 0.02 | 506 |
4.9 | 4.39 × 10−12 | 2.13 × 10−5 | 4.85 × 106 | 0.14 | 32.1 |
5.0 | 3.54 × 10−15 | 1.92 × 10−5 | 5.42 × 109 | 0.17 | 22.8 |
5.1 | 4.96 × 10−15 | 1.68 × 10−5 | 3.39 × 109 | 0.23 | 31.5 |
5.5 | 7.04 × 10−10 | 6.37 × 10−6 | 9.05 × 103 | 0.52 | 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, W.; Wang, Z.; Li, Y.; Zhang, H. OFF-State Leakage Suppression in Vertical Electron–Hole Bilayer TFET Using Dual-Metal Left-Gate and N+-Pocket. Materials 2022, 15, 6924. https://doi.org/10.3390/ma15196924
Liu H, Zhang W, Wang Z, Li Y, Zhang H. OFF-State Leakage Suppression in Vertical Electron–Hole Bilayer TFET Using Dual-Metal Left-Gate and N+-Pocket. Materials. 2022; 15(19):6924. https://doi.org/10.3390/ma15196924
Chicago/Turabian StyleLiu, Hu, Wenting Zhang, Zaixing Wang, Yao Li, and Huawei Zhang. 2022. "OFF-State Leakage Suppression in Vertical Electron–Hole Bilayer TFET Using Dual-Metal Left-Gate and N+-Pocket" Materials 15, no. 19: 6924. https://doi.org/10.3390/ma15196924
APA StyleLiu, H., Zhang, W., Wang, Z., Li, Y., & Zhang, H. (2022). OFF-State Leakage Suppression in Vertical Electron–Hole Bilayer TFET Using Dual-Metal Left-Gate and N+-Pocket. Materials, 15(19), 6924. https://doi.org/10.3390/ma15196924