Improved Environment Stability of Y2O3 RRAM Devices with Au Passivated Ag Top Electrodes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, H.; Liu, H. UV-nanoimprint lithography: Structure, materials and fabrication of flexible molds. J. Nanosci. Nanotechnol. 2013, 13, 3145–3172. [Google Scholar] [CrossRef] [PubMed]
- Borgand, H.J.; Woudenberg, R.W. Trends in optical recording. J. Magn. Magn. Mater. 1999, 193, 519–525. [Google Scholar]
- Lu, C.Y. Future prospects of NAND flash memory technology—The evolution from floating gate to charge trapping to 3D stacking. J. Nanosci. Nanotechnol. 2012, 12, 7604–7618. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Wang, Z.; Kim, K.M.; Wu, H.; Ravichandran, V.; Xia, Q.; Hwang, C.S.; Yang, J.J. An artificial nociceptor based on a diffusive memristor. Nat. Commun. 2018, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Jeong, D.S.; Hwang, C.S. Nonvolatile memory materials for neuromorphic intelligent machines. Adv. Mater. 2018, 30, 1704729. [Google Scholar] [CrossRef]
- Jang, J.; Subramanian, V. Effect of electrode material on resistive switching memory behavior of solution-processed resistive switches: Realization of robust multi-level cell. Thin Solid Films 2017, 625, 87–92. [Google Scholar] [CrossRef]
- Smith, J.; Chung, S.; Jang, J.; Biaou, C.; Subramanian, V. Solution-processed complementary resistive switching arrays for associative memory. IEEE Trans. Electron Devices 2017, 64, 4310–4316. [Google Scholar] [CrossRef]
- Lee, S.; Kim, T.; Jang, B.; Lee, W.Y.; Song, K.C.; Kim, H.S.; Do, G.Y.; Hwang, S.B.; Chung, S.; Jang, J. Impact of device area and film thickness on performance of sol-gel processed ZrO2 RRAM. IEEE Electron Device Lett. 2018, 39, 668–671. [Google Scholar] [CrossRef]
- Ha, S.; Lee, H.; Lee, W.Y.; Jang, B.; Kwon, H.J.; Kim, K.; Jang, J. Effect of annealing environment on the performance of sol-gel-processed ZrO2 RRAM. Electronics 2019, 8, 947. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Hong, W.; Lee, C.; Lee, W.Y.; Kim, H.J.; Kwon, H.J.; Kang, H.; Jang, J. Sol-gel-processed amorphous-phase ZrO2 Based resistive random access memory. Mater. Res. Express 2021, 8, 116301. [Google Scholar] [CrossRef]
- Ding, Z.; Feng, Y.; Huang, P.; Liu, L.; Kang, J. Low-power resistive switching characteristic in HfO2/TiOx bi-layer resistive random-access memory. Nanoscale Res. Lett. 2018, 14, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piros, E.; Petzold, S.; Zintler, A.; Kaiser, N.; Vogel, T.; Eilhardt, R.; Wenger, C.; Luna, L.M.; Alff, L. Enhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier. Appl. Phys. Lett. 2020, 177, 013504. [Google Scholar] [CrossRef]
- Petzold, S.; Piros, E.; Sharath, S.U.; Zintler, A.; Hildebrandt, E.; Molina-Luna, L.; Wenger, C.; Alff, L. Gradual reset and set characteristics in yttrium oxide based resistive random access memory. Semicond. Sci. Technol. 2019, 34, 075008. [Google Scholar] [CrossRef]
- Kim, K.; Lee, C.; Lee, W.Y.; Kim, H.J.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Jang, J. Enhanced switching ratio of sol–gel-processed Y2O3 RRAM device by suppressing oxygen-vacancy formation at high annealing temperature. Semicond. Sci. Technol. 2021, 37, 015007. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, H.J.; Lee, W.Y.; Kim, K.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Kim, K.; Jang, J. Enhanced switching reliability of sol–gel-processed Y2O3 RRAM devices based on Y2O3 surface roughness-induced local electric field. Materials 2022, 15, 1943. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.W.; Lee, W.Y.; Kim, K.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Kim, K.; Jang, J. Flexible sol-gel-processed Y2O3 RRAM devices obtained via UV/Ozone-assisted photochemical annealing process. Materials 2022, 15, 1899. [Google Scholar] [CrossRef]
- Chiam, S.Y.; Chim, W.K.; Pi, C.; Huan, A.C.H.; Wang, S.J.; Pan, J.S.; Turner, S.; Zhang, J. Band alignment of yttrium oxide on various relaxed and strained semiconductor substrates. J. Appl. Phys. 2008, 103, 083702. [Google Scholar] [CrossRef]
- Rushchanskii, K.Z.; Blügel, S.; Ležaić, M. Ab initio phase diagrams of Hf-O, Zr-O and Y-O: A comparative study. Faraday Discuss. 2019, 213, 321–337. [Google Scholar] [CrossRef]
- Lo, C.L.; Hou, T.H.; Chen, M.C.; Huang, J.J. Dependence of read margin on pull-up schemes in high-density one selector–one resistor crossbar array. IEEE Trans. Electron Devices 2013, 60, 420–426. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, P.; Chen, B.; Yang, X.; Gao, B.; Wang, J.; Zeng, L.; Du, G.; Kang, J. RRAM, Crossbar array with cell selection device: A device and circuit interaction study. IEEE Trans. Electron Devices 2013, 60, 719–726. [Google Scholar] [CrossRef]
- Lee, C.; Lee, W.Y.; Kim, H.J.; Bae, J.H.; Kang, I.M.; Lim, D.; Kim, K.; Jang, J. Extremely bias stress stable enhancement mode sol–gel-processed SnO2 thin-film transistors with Y2O3 passivation layers. Appl. Surf. Sci. 2021, 559, 149971. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, D.W.; Kim, H.J.; Kim, K.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Kim, K.; Jang, J. Environmentally and electrically stable sol–gel-deposited SnO2 thin-film transistors with controlled passivation layer diffusion penetration depth that minimizes mobility degradation. ACS Appl. Mater. Interfaces 2022, 14, 10558–10565. [Google Scholar] [CrossRef] [PubMed]
- Kruk, A. Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics. Materials 2020, 13, 4928. [Google Scholar] [CrossRef]
- Atay, F.; Gultepe, A. Structural, optical and surface properties of sol–gel-derived boron-doped ZnO films for photocatalytic applications. Appl. Phys. A 2022, 128, 9. [Google Scholar] [CrossRef]
- Lee, C.; Lee, Y.W.; Lee, H.; Ha, S.; Bae, J.H.; Kang, I.M.; Kim, K.; Jang, J. Sol-Gel Processed Yttrium-Doped SnO2 Thin Film Transistors. Electronics 2020, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, D.W.; Lee, W.Y.; Lee, S.H.; Bae, J.H.; Kang, I.M.; Jang, J. Improved Negative Bias Stress Stability of Sol–Gel-Processed Li-Doped SnO2 Thin-Film Transistors. Electronics 2021, 10, 1629. [Google Scholar] [CrossRef]
- Jang, J.; Kang, H.; Chakravarthula, H.C.N.; Subramanian, V. Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 2015, 1, 1500086. [Google Scholar] [CrossRef]
- Scheideler, W.J.; Jang, J.; Karim, M.A.U.; Kitsomboonloha, R.; Zeumault, Z.; Subramanian, V. Gravure-Printed Sol-Gels on Flexible Glass: A Scalable Route to Additively Patterned Transparent Conductors. ACS Appl. Mater. Interfaces 2015, 7, 12679–12687. [Google Scholar] [CrossRef]
- Yang, J.J.; Strachan, J.P.; Miao, F.; Zhang, M.X.; Pickett, M.D.; Yi, W.; Ohlberg, D.A.A.; Medeiros-Ribeiro, G.; Williams, R.S. Metal/TiO2 interfaces for memristive switches. Appl. Phys. Mater. Sci. Process 2011, 102, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Gao, S.; Zeng, F.; Tang, G.S.; Li, S.Z.; Song, C.; Fu, H.D.; Pan, F. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices. J. Appl. Phys. 2013, 114, 014502. [Google Scholar] [CrossRef]
- Yun, H.J.; Choi, B.J. Effects of moisture and electrode material on AlN-based resistive random access memory. Ceram. Int. 2019, 45, 16311–16316. [Google Scholar] [CrossRef]
- Valov, I.; Tsuruoka, T. Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D Appl. Phys. 2018, 51, 413001. [Google Scholar] [CrossRef]
- Lübben, M.; Wiefels, S.; Waser, R.; Valov, I. Processes and Effects of Oxygen and Moisture in Resistively Switching TaOx and HfOx. Adv. Electron. Mater. 2018, 4, 1700458. [Google Scholar] [CrossRef]
- Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Valov, I.; Waser, R.; Aono, M. Effects of Moisture on the Switching Characteristics of Oxide-Based, Gapless-Type Atomic Switches. Adv. Funct. Mater. 2012, 22, 70. [Google Scholar] [CrossRef]
- Chang, C.F.; Chen, J.Y.; Huang, C.W.; Chiu, C.H.; Lin, T.Y.; Yeh, P.H.; Wu, W.W. Direct Observation of Dual-Filament Switching Behaviors in Ta2O5-Based Memristors. Small 2017, 13, 1603116. [Google Scholar] [CrossRef]
- Wei, W.; Mao, C.; Ortiz, L.A.; Sadoway, D.R. Oriented silver oxide nanostructures synthesized through a template-free Electrochemical route. J. Mater. Chem. 2011, 21, 432–438. [Google Scholar] [CrossRef]
- El Mel, A.A.; Stephant, N.; Hamon, J.; Thiry, D.; Chauvin, A.; Chettab, M.; Gautron, E.; Konstantinidis, S.; Granier, A.; Tessier, P.Y. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma. Nanoscale 2016, 8, 141–148. [Google Scholar] [CrossRef]
- Zhou, L.Q.; Ling, C.; Jones, M.; Jia, H. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chem. Commun. 2015, 51, 17704–17707. [Google Scholar] [CrossRef]
- Goodacre, D.; Blum, M.; Buechner, C.; Hoek, H.; Gericke, S.M.; Jovic, V.; Franklin, J.B.; Kittiwatanakul, S.; Söhnel, T.; Bluhm, H.; et al. Water adsorption on vanadium oxide thin films in ambient relative humidity. J. Chem. Phys. 2020, 152, 044715. [Google Scholar] [CrossRef]
- Yang, B.; Xu, N.; Li, C.; Huang, C.; Ma, D.; Liu, J.; Arumi, D.; Fang, L. A forming-free ReRAM cell with low operating voltage. IEICE Electron. Express 2020, 17, 20200343. [Google Scholar] [CrossRef]
- Abbas, Y.; Ambade, R.B.; Ambade, S.B.; Han, T.H.; Choi, C. Tailored nanoplateau and nanochannel structures using solution-processed rutile TiO2 thin films for complementary and bipolar switching characteristics. Nanoscale 2019, 11, 13815. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Lee, D.; Yoo, J.S.; Lee, S.; Jung, H.S. Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell. Nano Converg. 2016, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Kumar, A.; Mandal, B.; Htay, M.T.; Mukherjee, S. Impact of Schottky junctions in the transformation of switching modes in amorphous Y2O3-based memristive system. J. Phys. D Appl. Phys. 2018, 51, 315102. [Google Scholar] [CrossRef]
- Das, M.; Kumar, A.; Kunar, S.; Mandal, B.; Siddharth, G.; Kumar, P.; Htay, M.T.; Mukherjee, S. Impact of interfacial SiO2 on dual ion beam sputtered Y2O3-based memristive system. IEEE Trans. Nanotechnol. 2020, 19, 332–337. [Google Scholar]
- Zheng, Z.W.; Hsu, H.H.; Cheng, C.H.; Chen, P.C. Improved high-temperature switching characteristics of Y2O3/TiOx resistive memory through carrier depletion effect. Phys. Status Solidi 2014, 8, 431–435. [Google Scholar] [CrossRef]
Reference | Material System | Process | HRS/LRS | Endurance (cycle) /Retention (Sec) | Environment Stability |
---|---|---|---|---|---|
44 | Al/Y2O3/Al | Ion beam sputter | ~30 | ~3 × 104/105 | N/A |
45 | n-Si/a-Y2O3/Y2O3/Al | Ion beam sputter | ~10 | ~3 × 104/~103 | N/A |
46 | Ni/Y2O3 /TiOx/TaN | E-beam Evap. | ~102 | ~102/~104 | N/A |
This Work | Au/Ag /Y2O3/ITO | Sol-gel | ~103 | ~3 × 102/~104 | 30 Days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-I.; Lee, T.; Lee, W.-Y.; Kim, K.; Bae, J.-H.; Kang, I.-M.; Lee, S.-H.; Kim, K.; Jang, J. Improved Environment Stability of Y2O3 RRAM Devices with Au Passivated Ag Top Electrodes. Materials 2022, 15, 6859. https://doi.org/10.3390/ma15196859
Kim H-I, Lee T, Lee W-Y, Kim K, Bae J-H, Kang I-M, Lee S-H, Kim K, Jang J. Improved Environment Stability of Y2O3 RRAM Devices with Au Passivated Ag Top Electrodes. Materials. 2022; 15(19):6859. https://doi.org/10.3390/ma15196859
Chicago/Turabian StyleKim, Hae-In, Taehun Lee, Won-Yong Lee, Kyoungdu Kim, Jin-Hyuk Bae, In-Man Kang, Sin-Hyung Lee, Kwangeun Kim, and Jaewon Jang. 2022. "Improved Environment Stability of Y2O3 RRAM Devices with Au Passivated Ag Top Electrodes" Materials 15, no. 19: 6859. https://doi.org/10.3390/ma15196859
APA StyleKim, H.-I., Lee, T., Lee, W.-Y., Kim, K., Bae, J.-H., Kang, I.-M., Lee, S.-H., Kim, K., & Jang, J. (2022). Improved Environment Stability of Y2O3 RRAM Devices with Au Passivated Ag Top Electrodes. Materials, 15(19), 6859. https://doi.org/10.3390/ma15196859