Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling
Abstract
:1. Introduction
2. Experiment Section
2.1. Sample Fabrication
2.2. Characterization of the Diamond/Al Composites
2.3. Thermal Cycling Test
3. Result and Discussion
3.1. Interfacial Structure of the Diamond/Al Composites Subjected to Thermal Cycling
3.2. Fracture Surfaces of the Diamond/Al Composites Subjected to Thermal Cycling
3.3. Thermal Conductivity of the Diamond/Al Composites Subjected to Thermal Cycling
3.4. Residual Plastic Strain in the Diamond/Al Composites Subjected to Thermal Cycling
4. Conclusions
- (1)
- The thermal conductivity of the diamond/Al composites with different diamond particle sizes declines as the thermal cycling number increases, and the thermal conductivity declines mildly in a range of 2–5% after 200 thermal cycles. The 272 μm-diamond/Al composite still maintains a high thermal conductivity over 720 W m−1 K−1 after thermal cycling.
- (2)
- The strong interface created by the discrete in situ Al4C3 phase withstands the thermal stress during thermal cycling, which is responsible for the excellent stability of thermal conductivity in the diamond/Al composites. The decrease of thermal conductivity of the Al matrix is the main reason for the decline of the thermal conductivity of the composites.
- (3)
- The decrease in the thermal conductivity of the Al matrix is explained by the dislocation density and is well supported by the calculations of plastic strain in the Al matrix during thermal cycling.
- (4)
- The diamond/Al composites show promising application as an electronic packaging material because of their high thermal conductivity and excellent stability of thermal conductivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smoyer, J.L.; Norris, P.M. Brief historical perspective in thermal management and the shift toward management at the nanoscale. Heat Transfer Eng. 2019, 40, 269–282. [Google Scholar] [CrossRef]
- Mathew, J.; Krishnan, S. A review on transient thermal management of electronic devices. J. Electron. Packag. 2021, 144, 10801. [Google Scholar] [CrossRef]
- Moore, A.L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174. [Google Scholar] [CrossRef]
- Che, Z.; Li, J.; Wang, Q.; Wang, L.; Zhang, H.; Zhang, Y.; Wang, X.; Wang, J.; Kim, M.J. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos. Part A 2018, 107, 164–170. [Google Scholar] [CrossRef]
- Che, Z.; Li, J.; Wang, L.; Qi, Y.; Zhang, Y.; Zhang, H.; Wang, X.; Wang, J.; Kim, M.J. Effect of diamond surface chemistry and structure on the interfacial microstructure and properties of Al/diamond composites. RSC Adv. 2016, 6, 67252–67259. [Google Scholar] [CrossRef]
- Molina-Jordá, J.M. Design of composites for thermal management: Aluminum reinforced with diamond-containing bimodal particle mixtures. Compos. Part A 2015, 70, 45–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Zhao, L.; Wang, X. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J. Mater. Sci. 2015, 50, 688–696. [Google Scholar] [CrossRef]
- Wang, P.; Xiu, Z.; Jiang, L.; Chen, G.; Lin, X.; Wu, G. Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control. Mater. Des. 2015, 88, 1347–1352. [Google Scholar] [CrossRef]
- Guo, C.; He, X.; Ren, S.; Qu, X. Effect of (0-40) wt.% Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration. J. Alloys Compd. 2016, 664, 777–783. [Google Scholar] [CrossRef]
- Che, Z.; Wang, Q.; Wang, L.; Li, J.; Zhang, H.; Zhang, Y.; Wang, X.; Wang, J.; Kim, M.J. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos. Part B 2017, 113, 285–290. [Google Scholar] [CrossRef]
- Monje, I.E.; Louis, E.; Molina, J.M. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Compos. Part A 2013, 48, 9–14. [Google Scholar] [CrossRef]
- Weber, L.; Tavangar, R. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration-potential and limits. Adv. Mater. Res. 2009, 59, 111–115. [Google Scholar] [CrossRef]
- Li, X.; Yang, W.; Sang, J.; Zhu, J.; Fu, L.; Li, D.; Zhou, L. Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites. J. Alloys Compd. 2020, 846, 156258. [Google Scholar] [CrossRef]
- Mizuuchi, K.; Inoue, K.; Agari, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J.; Kawahara, M.; Makino, Y.; Ito, M. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS. Microelectron. Reliab. 2014, 54, 2463–2470. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, Z.; Fan, G.; Ji, G.; Zhang, J.; Xu, R.; Shan, A.; Li, Z.; Zhang, D. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Mater. Des. 2016, 90, 845–851. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Z.; Fan, G.; Guo, Q.; Kai, X.; Ji, G.; Zhang, L.; Zhang, D. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater. Des. 2013, 47, 160–166. [Google Scholar] [CrossRef]
- Sang, J.; Chen, Q.; Yang, W.; Zhu, J.; Fu, L.; Li, D.; Zhou, L. Architecting micron SiC particles on diamond surface to improve thermal conductivity and stability of Al/diamond composites. Surf. Interfaces 2022, 31, 102019. [Google Scholar] [CrossRef]
- Kondakci, E.; Solak, N. Enhanced thermal conductivity and long-term stability of diamond/aluminum composites using SiC-coated diamond particles. J. Mater. Sci. 2022, 57, 1–11. [Google Scholar] [CrossRef]
- Monje, I.E.; Louis, E.; Molina, J.M. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment. J. Mater. Sci. 2016, 51, 8027–8036. [Google Scholar] [CrossRef]
- Wang, P.; Chen, G.; Li, W.; Li, H.; Ju, B.; Hussain, M.; Yang, W.; Wu, G. Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int. J. Min. Met. Mater. 2021, 28, 1821–1827. [Google Scholar] [CrossRef]
- Abyzov, A.M.; Kruszewski, M.J.; Ciupiński, A.; Mazurkiewicz, M.; Michalski, A.; Kurzydłowski, K.J. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering. Mater. Des. 2015, 76, 97–109. [Google Scholar] [CrossRef]
- JESD22-A104C; Temperature Cycling. JEDEC Solid State Technology Association: Arlington County, VA, USA, 2005.
- Asthana, R.; Tewari, S.N. Interfacial and capillary phenomena in solidification processing of metal-matrix composites. Compos. Manuf. 1993, 4, 3–25. [Google Scholar] [CrossRef]
- Bai, G.; Zhang, Y.; Liu, X.; Dai, J.; Wang, X.; Zhang, H. High-temperature thermal conductivity and thermal cycling behavior of Cu-B/diamond composites. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 626–636. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Li, N.; Che, Z.; Liu, X.; Chang, G.; Hao, J.; Dai, J.; Wang, X.; Sun, F.; et al. Interfacial thermal conductance between Cu and diamond with interconnected W-W2C interlayer. ACS Appl. Mater. Inter. 2022, 14, 35215–35228. [Google Scholar] [CrossRef] [PubMed]
- Vorobieva, A.; Nikulin, A.; Shikov, A.; Pantsyrny, V.; Polikarpova, M.; Kozlenkova, N.; Dergunova, E.; Popova, E.; Rodionova, L. The experimental investigation of copper for superconductors. Phys. C 2001, 354, 371–374. [Google Scholar] [CrossRef]
- Gong, D.; Cao, Y.; Deng, X.; Jiang, L. Revealing the dimensional stability mechanisms of SiC/Al composite under long-term thermal cycling. Ceram. Int. 2022, 48, 13927–13937. [Google Scholar] [CrossRef]
- Daguang, L.; Guoqin, C.; Longtao, J.; Ziyang, X.; Yunhe, Z.; Gaohui, W. Effect of thermal cycling on the mechanical properties of Cf/Al composites. Mater. Sci. Eng. A 2013, 586, 330–337. [Google Scholar] [CrossRef]
- Tavangar, R.; Molina, J.M.; Weber, L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scr. Mater. 2007, 56, 357–360. [Google Scholar] [CrossRef]
- Ye, X.B.; He, Z.H.; Pan, B.C. The thermal conductivity of defected copper at finite temperatures. J. Mater. Sci. 2020, 55, 4453–4463. [Google Scholar] [CrossRef]
- Narutani, T.; Takamura, J. Grain-size strengthening in terms of dislocation density measured by resistivity. Acta Metall. Mater. 1991, 39, 2037–2049. [Google Scholar] [CrossRef]
- Cho, C.; Cho, H. Effect of dislocation characteristics on electrical conductivity and mechanical properties of AA 6201 wires. Mater. Sci. Eng. A 2021, 809, 140811. [Google Scholar] [CrossRef]
- Zhang, H. Effect of Thermal Cycling on Electrical and Thermal Properties of Al/SiCp Composites. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2007. [Google Scholar]
- Chen, N.; Zhang, H.; Gu, M.; Jin, Y. Effect of thermal cycling on the expansion behavior of Al/SiCp composite. J. Mater. Process. Technol. 2009, 209, 1471–1476. [Google Scholar] [CrossRef]
- Olsson, M.; Giannakopoulos, A.E.; Suresh, S. Elastoplastic analysis of thermal cycling: Ceramic particles in a metallic matrix. J. Mech. Phys. Solids 1995, 43, 1639–1671. [Google Scholar] [CrossRef]
- Taylor, G.I. The mechanism of plastic deformation of crystals; Part I, Theoretical. Proc. R. Soc. London, Ser. A 1934, 145, 362–387. [Google Scholar]
- Ho, C.Y.; Powell, R.W.; Liley, P.E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1972, 1, 279–421. [Google Scholar] [CrossRef]
- Field, J.E.; Pickles, C.S.J. Strength, fracture and friction properties of diamond. Diam. Relat. Mater. 1996, 5, 625–634. [Google Scholar] [CrossRef]
- Slack, G.A.; Bartram, S.F. Thermal expansion of some diamondlike crystals. J. Appl. Phys. 1975, 46, 89–98. [Google Scholar] [CrossRef]
- Schöbel, M.; Degischer, H.P.; Vaucher, S.; Hofmann, M.; Cloetens, P. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum. Acta Mater. 2010, 58, 6421–6430. [Google Scholar] [CrossRef]
- Yan, Y.; Geng, L. Effects of particle size on the thermal expansion behavior of SiCp/Al composites. J. Mater. Sci. 2007, 42, 6433–6438. [Google Scholar] [CrossRef]
- Wu, S.Q.; Wei, Z.S.; Tjong, S.C. The mechanical and thermal expansion behavior of an Al-Si alloy composite reinforced with potassium titanate whisker. Compos. Sci. Technol. 2000, 60, 2873–2880. [Google Scholar] [CrossRef]
Diamond Particle Size (μm) | Nitrogen Concentration [N] (ppm) | Thermal Conductivity λ (W m−1 K−1) |
---|---|---|
66 | 189 | 1582 |
272 | 129 | 1778 |
Sample | Diamond Particle Size (μm) | Thermal Conductivity of the Al Matrix (W m−1 K−1) | Reduction (%) |
---|---|---|---|
A | 66 | 208 | 12.2 |
B | 272 | 222 | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Hao, J.; Zhang, Y.; Wang, W.; Zhao, J.; Wu, H.; Wang, X.; Zhang, H. Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling. Materials 2022, 15, 6640. https://doi.org/10.3390/ma15196640
Li N, Hao J, Zhang Y, Wang W, Zhao J, Wu H, Wang X, Zhang H. Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling. Materials. 2022; 15(19):6640. https://doi.org/10.3390/ma15196640
Chicago/Turabian StyleLi, Ning, Jinpeng Hao, Yongjian Zhang, Wei Wang, Jie Zhao, Haijun Wu, Xitao Wang, and Hailong Zhang. 2022. "Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling" Materials 15, no. 19: 6640. https://doi.org/10.3390/ma15196640
APA StyleLi, N., Hao, J., Zhang, Y., Wang, W., Zhao, J., Wu, H., Wang, X., & Zhang, H. (2022). Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling. Materials, 15(19), 6640. https://doi.org/10.3390/ma15196640